
synthaser
Release 1.0

Oct 13, 2021

Contents

1 Features 3

2 User guide 5
2.1 User guide . 5

3 API Documentation 19
3.1 API Documentation . 19

4 Indices and tables 39

Python Module Index 41

Index 43

i

ii

synthaser, Release 1.0

Welcome to synthaser’s documentation!

synthaser is a tool for the characterisation and classificiation of the domain architecture of protein sequences. It
leverages the NCBI’s conserved domain (CD) search tool, CD-Search, for comphrehensive, fully remote domain
searches, and automatically characterises and classifies sequences based on user-defined rules.

To view an example of what synthaser can produce, click the image below:

Contents 1

_static/anid.html

synthaser, Release 1.0

2 Contents

CHAPTER 1

Features

• Fully remote searches using the NCBI’s CD-Search API

• Automatic characterisation and classification of protein sequences based on user-defined rules

• Fully interactive visualisations which can be tweaked and saved to SVG

3

synthaser, Release 1.0

4 Chapter 1. Features

CHAPTER 2

User guide

Get started using synthaser.

2.1 User guide

2.1.1 Installation

This section of the documentation covers the installation of synthaser.

Python version

synthaser is written using Python 3, and should work with any version above 3.3.

Dependencies

These packages are automatically installed when installing cblaster:

• requests

• biopython

Other dependencies

• RPS-BLAST is the search tool used in local cblaster searches

• rpsbproc is used to post-process RPS-BLAST results to remove redundant hits and fill in information about
domain families like in the web CD-Search tool

5

https://requests.readthedocs.io/en/master/
https://biopython.org/

synthaser, Release 1.0

Installation

1. (Optional) Create a new virtual environment

python3 -m virtualenv venv
source venv/bin/activate

This will create (and activate) a sandboxed environment where you can install Python packages separately to those
available on your system. This isn’t necessarily required, but is recommended.

2. Install synthaser

The easiest way to obtain synthaser is to install it directly from PyPI using pip:

pip install synthaser

This will install synthaser, as well as all of its required dependencies. Alternatively, you could clone the cblaster
repository from GitHub and install it like so:

git clone https://www.github.com/gamcil/synthaser
cd synthaser
pip install .

This will download the latest version of cblaster and install it from the downloaded folder, rather than from PyPI.

synthaser should now be available directly on your terminal:

$ synthaser -h
usage: synthaser [-h] [--version] {getdb,getseq,search} ...
synthaser: a Python toolkit for analysing domain architecture of secondary metabolite
→˓megasynth (et) ases with NCBI CD-Search.

positional arguments:
{getdb,getseq,search}
getdb Download a CDD database for local searches
getseq Download sequences from NCBI
search Run a synthaser search

optional arguments:
-h, --help show this help message and exit
--version show program's version number and exit

Cameron L.M. Gilchrist 2020

Installing RPS-BLAST and rpsbproc

RPS-BLAST is a distributed in the NCBI’s BLAST+ toolkit. This can be acquired either directly from NCBI’s FTP
or from your distributions repositories, for example in Ubuntu: sudo apt install ncbi-blast+.

To install rpsbproc, follow these steps:

1. Acquire the relevant archive for your system from the CDD FTP.

2. Extract the contents

3. Acquire the data files required by rpsbproc either by running utils/getcdddata.sh, or directly from the FTP
as detailed by the README (see: domain-annotation files). The program does NOT require you to download all of the
domain databases. So, if doing the former, you can chttps://www.circles.life/au/plan/ancel the run after the necessary
files are in data/, then delete db/ and the database .tar.gz files.

6 Chapter 2. User guide

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/
ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/rpsbproc/

synthaser, Release 1.0

4. Make sure the rpsbproc binary file is on your system $PATH. This is a requirement of synthaser, as it will throw
an error if it cannot find rpsbproc directly on the $PATH (i.e. accessable in terminal just by typing ‘rpsbproc’).

2.1.2 Quickstart

This section of the documentation gives a brief overview of how to get started using synthaser and a broad overview
of its features.

Pre-search configuration using the config module

The NCBI requires that you provide some identification before using their services in order to prevent abuse.
This can be an e-mail address, or more recently, an API key (https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/
new-api-keys-for-the-e-utilities/).

You can use the config module to set these parameters for synthaser searches (you’ll only have to do this once!).
This module will save a file, config.ini, wherever your operating system stores configuration files (for example, in
Linux it will be saved in ~/.local/config/synthaser). When you run remote searches in synthaser, it will first check
to see if it can find this file, and then if an e-mail address or API key is saved; if they are not found, synthaser will
throw an error.

To set an e-mail address:

$ synthaser config --email "foo@bar.com"

. . . or an API key:

$ synthaser config --api_key <your API key>

Running a synthaser search using the search module

Once configured, a synthaser search is as easy as:

synthaser search --query_file sequences.fasta

This will take all sequences in sequences.fasta and start a remote CD-Search run.

Note: Most of the arguments used with synthaser have shorter forms which can be found in the help menus (e.g.
synthaser search --help). For example, the short version of --query_file here is -qf.

Alternatively, you can use the -qi/--query_ids argument to start a search using just a collection of NCBI iden-
tifiers. For example:

synthaser search -qi KAF4294870.1 KAF4294328.1 KAF4293514.1

This will retrieve each sequence and start a remote CD-Search run.

There are several optional arguments you can use which control the output synthaser will generate. To generate a
synthaser plot of your sequences, add the -p/--plot argument, optionally specifying a name to generate a portable
HTML file:

synthaser search -qf sequences.fasta -p <plot.html>

The plot will then open directly in your web browser.

You can save a file containing the data of a synthaser search by using the -json, --json_file argument:

2.1. User guide 7

https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/new-api-keys-for-the-e-utilities/
https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/new-api-keys-for-the-e-utilities/

synthaser, Release 1.0

synthaser search -qf sequences.fasta -json session.json

This is particularly useful in larger searches, as the search won’t have to be completely redone if you want to e.g.
generate a new visualisation or output table. If the file specified does not exist, synthaser will create it; if it does exist,
synthaser will attempt to load it.

The default output will show your query sequences and their domain architectures, grouped by their classifications.
For example, the search using --query_ids from above produces:

PKS --> Type I --> Partially-reducing

KAF4294870.1 KS-AT-DH-MT-KR-ACP

Thiolase

KAF4293514.1 KS
KAF4294328.1 KS

You can make this tabular by using the -lf, --long_form argument, which will produce a comma-separated
output like:

Synthase,Length (aa),Architecture,Classification
KAF4294870.1,2445,KS-AT-DH-MT-KR-ACP,PKS|Type I|Partially-reducing
KAF4294328.1,413,KS,Thiolase
KAF4293514.1,419,KS,Thiolase

Where each row contains the sequence, its length, domain architecture and classification. This can then be directly
imported into spreadsheet software.

Another very useful argument is --cdsid. This allows you to resume or load a CD-Search run at a later time. The
CDSID (CD-Search identifier) is reported by synthaser at the start of every search, and takes the form:

QM3-qcdsearch-XXXXXXXXXXXXXXX-YYYYYYYYYYYYYYYY

For example, in the output of the above search:

[14:57:52] INFO - Starting synthaser
[14:57:56] INFO - Launching new CD-Search run
[14:57:58] INFO - Run ID: QM3-qcdsearch-894E2B07233244A-1C6342BEDF36CB85

When I then wanted the tabular output, I could simply re-use the CDSID:

synthaser search \
--query_ids KAF4294870.1 KAF4294328.1 KAF4293514.1 \
--cdsid QM3-qcdsearch-894E2B07233244A-1C6342BEDF36CB85 \
--long_form

CD-Search parameters can be altered using the following arguments:

Argument Description
--cdsid CD-Search run ID (e.g. QM3-qcdsearch-XXXXXXXXXXXXXXX-YYYYYYYYYYYYYYYY).
--smode Search mode (auto, prec or live; def. auto)
--useid1 Look for sequences in archival database if not found (def. true)
--compbasedadj Use composition-corrected scoring (def. 1)
--filter Filter out compositionally biased regions from queries (def. true)
--evalue Maximum E-value (def. 3)
--maxhit Maximum number of hits to return (def. 500)
--dmode Level of hits to report (full, rep or std; def. full)

8 Chapter 2. User guide

synthaser, Release 1.0

For a fuller explanation of these arguments, see the NCBI documentation here.

The synthaser plot

The synthaser plot is fairly intuitive, but deserves a little explanation of its own. Here is what the search above looks
like plotted:

Query sequences are drawn to scale, with coloured boxes representing the domains that were found. Sequences
are grouped by their classifications, and annotation bars for classifications are drawn in the appropriate locations
automatically. This looks a not nicer when you have more sequences covering more classifications!

Hovering over a domain box in a sequence will show a tooltip menu that looks like:

2.1. User guide 9

https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd_help.shtml

synthaser, Release 1.0

This shows you a summary of the best domain family hit, with linkouts to their corresponding entries in the NCBI
databases. You can also copy amino acid sequences of either the entire query or just the specific domain by clicking
the buttons at the bottom.

The legend contains a list of the domains found in all of your sequences next to a box with the corresponding colour.
This colour can be changed simply by clicking the box and selecting another colour.

Sequences can be hidden by clicking on their names. If a sequence containing the last occurrence of a specific domain
in the plot is hidden, that domain will automatically be removed from the legend as well.

Sizing and positioning of plot elements can be controlled by the settings in the dropdown menu on the right hand side
of the plot. In the above image, the only change from default was the maximum sequence length (in pixels); by default,
this is set to 600 px.

You can generate FASTA files containing extracted sequences of specific domain types from your sequences using the
Download domain sequences section at the bottom of the dropdown menu. Simply select a domain type and click the
Download! button.

Once you are happy with your figure, you can download a SVG image file by clicking the Save SVG button at the top
of the menu.

2.1.3 Creating custom rule sets

synthaser uses a central rule file which controls which domains it will save in domain architecture predictions, as well
as how sequences get classified based on those domain architectures.

The default rule file distributed in the package is meant for the analysis of fungal megasynthases (polyketide synthases,
fatty acid synthases and nonribosomal peptide synthetases). However, this can be repurposed for the analysis of any
other multidomain protein very easily using our web application.

What follows is a brief description of how synthaser uses the rule file at the various stages of its workflow.

Identifying domain ‘islands’

The problem synthaser aims to solve is best demonstrated in the following image:

10 Chapter 2. User guide

https://gamcil.github.io/synthaser/

synthaser, Release 1.0

This is the result of a CD-Search run using a hybrid polyketide synthase-nonribosomal peptide synthetase sequence as
a query. Within this visualisation, you can see all of the domain hits found in the sequence during the search, as well
as their positions within the sequence.

These domain hits very clearly fall into distinct ‘islands’ (indicated by blue boxes) with other, related do-
main hits. In this image, the domain islands correspond to the domain architecture of the synthase,
KS-AT-DH-MT-KR-ACP-C-A-T-R.

While this is easy to figure out manually by looking at the visualisation, we often want to analyse larger numbers of
these sequences (e.g. when looking at full fungal genomes), which quickly makes this manual approach prohibitive.
This is where synthaser comes in.

Creating domain types

The first element of the synthaser rule file is the list of domain ‘types’ that we want synthaser to find in the CD-Search
results. Each domain type is given a name as well as a list of specific domain families which correspond to the type.

Thinking back to the domain islands example above, we may wish to create a domain type called KS, which consists
of the domain families PKS and PKS_KS (the top-scoring domain families in the search). This would indicate to the
synthaser that whenever it finds hits for either PKS or PKS_KS domains, they should be saved and categorised as KS
domains.

These can be edited in the leftmost pane in the web application:

2.1. User guide 11

synthaser, Release 1.0

As mentioned, we first give the domain type a name (e.g. C), then we choose a list of specific domain families (e.g.
C_PKS-NRPS, Condensation). You can directly search for families in this box by accession or name.

Creating classification rules

Once synthaser has identified the domains in a query sequence and predicted its domain architecture, the next task is
classification. As with the domain identification step, while we can easily determine domain architecture directly from
the visual output and tell what type of synthase we have, the difficulty comes when we want to analyse more than a
single sequence at a time.

These can be edited in the Classification rules pane of the web application:

12 Chapter 2. User guide

synthaser, Release 1.0

This picture shows the rule for classifying a PKS-NRPS sequence. It consists of:

1. A name, given to a sequence when the rule is evaluated succesfully (Hyrid PKS-NRPS).

2. A list of domain types chosen from a multi-selection box populated by domain types created in the Domain
types pane (KS, A, C, ACP, TR).

3. An evaluation expression which checks for presence of key domains for this rule (0 for KS, 1 for A and 2 for C).
This rule will be satisfied if a sequence has a KS domain AND either an A OR C domain.

4. A renaming rule which specifies that a domain type should be renamed in a specific circumstance due to con-
vention (a TR domain, if found after a C or A domain, is renamed to R).

The only thing this rule does not have is domain filters, which would control the specific domain families that should
be saved for a domain type. In the fungal ruleset, this is key to being able to distinguish between KS domains from
fatty acid synthases and polyketide synthases, for example.

Classification rule evaluation hierarchy

Once you have established all of your classification rules, you need to define the order in which they should be
evaluated. This can be done in the Rule hierarchy pane:

2.1. User guide 13

synthaser, Release 1.0

This list is automatically populated by the rules that you created in the Classification rules pane; by default, they will
all be on the same evaluation level.

Rules are evaluated in top-to-bottom order according to this hierarchy. They can be rearranged by simply clicking and
dragging the grey handle to the left of the rule name and dropping them where you want them. This could simply mean
reordering rules on the same level (e.g. moving NRPS before Hybrid PKS-NRPS), or making certain rules children
of others (e.g. if the PKS rule is successfully evaluated, only then does synthaser try to evaluate the Type I rule).

14 Chapter 2. User guide

synthaser, Release 1.0

synthaser supports arbitrary levels of nesting.

Using the rule file

Once you’re happy with your rule set, click the Save rules button in the top-right of the web application. This wll
download a JSON format file containing the domain types, classification rules and hierarchy, that you can pass directly
to synthaser for it to use instead of the fungal ruleset.

For example, given a custom rule file, my_ruleset.json:

synthaser search -qf sequences.fa --rule_file my_ruleset.json

If you ever want to modify your rule set, this can also be done in the web application by loading your rule file with the
Load rules button, making your tweaks, then clicking Save rules to generate a new file.

2.1.4 Miscellaneous modules

synthaser also provides a few other modules to help you generate certain files.

getdb

The getdb module can be used to download pre-formatted RPS-BLAST databases for local searches. This module
will connect to the NCBI FTP and download whichever database/s you specify. For example, to download the CDD
to some folder databases:

synthaser getdb Cdd databases/

usage: synthaser getdb [-h] {cdd_families,Cdd,Cdd_NCBI,Cog,Kog,Pfam,Prk,Smart,Tigr}
→˓folder

Download a pre-formatted rpsblast database.

For full description of the available databases, see:
https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd_help.shtml#CDSource

Note that 'cdd_families' will download a file containing a summary of
all families in the CDD for rule building - not a searchable database.

positional arguments:
{cdd_families,Cdd,Cdd_NCBI,Cog,Kog,Pfam,Prk,Smart,Tigr}

Database to be downloaded
folder Folder where database is to be saved. Will save a .tar.gz

→˓file, and extract its
contents to a folder of the same name.

optional arguments:
-h, --help show this help message and exit

getseq

The getseq module can be used to download sequences, in FASTA format, from the NCBI. You can provide either
a text file containing newline separated NCBI identifiers, or directly in the command line separated by spaces. For
example:

synthaser getseq KAF4294870.1 KAF4294328.1 KAF4293514.1 -o sequences.fasta

2.1. User guide 15

synthaser, Release 1.0

usage: synthaser getseq [-h] [-o [OUTPUT]] sequence_ids [sequence_ids ...]

Download sequences from NCBI in FASTA format. This utility will accept either a file
→˓containing newline
separated sequence identifiers, or directly on the command line separated by spaces.

positional arguments:
sequence_ids Collection of NCBI sequence identifiers to retrieve

optional arguments:
-h, --help show this help message and exit
-o [OUTPUT], --output [OUTPUT]

Where to print output (def. stdout)

extract

The extract module can be used to extract domain/query sequences from synthaser search results. It takes a JSON
file (generated by -json/--json_file) and a prefix string which is used for the generated output files, as well as
several filters.

For example, to extract KS, A and TE domain sequences:

$ synthaser extract session.json out_ --types KS A TE -m domain
Output: out_KS.faa out_A.faa out_TE.faa

To extract full NRPS and non-reducing PKS sequences:

$ synthaser extract session.json out_ \
--mode synthase \
--classes Non-reducing NRPS

Output: out_Non-reducing.faa out_NRPS.faa

Or to extract PKS_KS domains (CDD) only from highly-reducing PKSs:

$ synthaser extract session.json out_ \
--families PKS_KS \
--classes Highly-reducing

Output: out_PKS_KS.faa

usage: synthaser extract [-h] [-m {domain,synthase}] [--types TYPES [TYPES ...]]
[--classes CLASSES [CLASSES ...]] [--families FAMILIES

→˓[FAMILIES ...]]
session prefix

Extract domain/synthase sequences from search results.

positional arguments:
session Synthaser session file
prefix Output file prefix

optional arguments:
-h, --help show this help message and exit
-m {domain,synthase}, --mode {domain,synthase}

Extract domain sequences or whole synthases from a session
→˓file
--types TYPES [TYPES ...]

(continues on next page)

16 Chapter 2. User guide

synthaser, Release 1.0

(continued from previous page)

Domain types
--classes CLASSES [CLASSES ...]

Sequence classifications
--families FAMILIES [FAMILIES ...]

CDD families

genbank

The genbank module allows you extract protein sequences from a given GenBank format file. For example:

synthaser genbank myfile.gbk

will extract all identified protein sequences and print them to the terminal.

As a convenience for fungal megasynthase analysis, we provide the --antismash flag, which allows you to extract
PKS/NRPS sequences directly from a GenBank file generated by antiSMASH.

usage: synthaser genbank [-h] [--antismash] genbank

Extract protein sequences from GenBank files. To extract PKS or NRPS sequences from
→˓antiSMASH GenBank
files, use the --antismash option.

positional arguments:
genbank GenBank file

optional arguments:
-h, --help show this help message and exit
--antismash Extract PKS/NRPS sequences from an antiSMASH file

2.1. User guide 17

https://antismash.secondarymetabolites.org/

synthaser, Release 1.0

18 Chapter 2. User guide

CHAPTER 3

API Documentation

The following pages detail all synthaser modules.

3.1 API Documentation

Reference for every public API exposed by synthaser:

3.1.1 synthaser.classify

This module contains the logic for classifying synthase objects based on user-defined rules.

To classify a collection of sequences, use the classify function:

>>> from synthaser.classify import classify
>>> classify(my_sequences)

A custom classification rule file can be provided to this function like so:

>>> classify(my_sequences, rule_file="my_rules.json")

Briefly, rule files should contain:

1) Rule entries, specifying the domain combinations required to satisfy them

2) Rule graph, encoding the hierarchy and order in which rules are evaluated

Alternatively, you could build a RuleGraph object in Python, e.g.:

>>> from synthaser.classify import Rule, RuleGraph
>>> one = Rule(name="Rule 1", domains=["D1", "D2"], evaluator="0 and 1")
>>> two = Rule(name="Rule 2", domains=["D3", "D4", "D5"], evaluator="(0 and 1) or 2")
>>> three = Rule(name="Rule 3", domains=["D6", "D7"], evaluator="0 or 1")
>>> graph = [

(continues on next page)

19

synthaser, Release 1.0

(continued from previous page)

... "Rule 1",

... {

... "Rule 2": ["Rule 3"]

... }

...]
>>> rg = RuleGraph(rules=[one, two, three], graph=graph)

And then save it to a file:

>>> with open("my_rules.json", "w") as fp:
... rg.to_json(fp)

This RuleGraph object can directly classify Synthase objects:

>>> rg.classify(my_sequences)

For further explanation of rule files, refer to the documentation.

class synthaser.classify.Rule(name=None, order=None, renames=None, domains=None, fil-
ters=None, evaluator=None, **kwargs)

A classification rule.

name
Name given to proteins satisfying this rule.

Type str

domains
Domain types required to satisfy rule.

Type list

filters
Specific CDD families for each domain type.

Type dict

evaluator
Evaluatable rule satisfaction statement.

Type str

evaluate(conditions)
Evaluates the rules evaluator string given evaluated conditions.

Iterates backwards to avoid bad substitutions in larger (>=10) indices. e.g. “0 and 1 and . . . and 13” –>
“False and True and . . . and True3”

Parameters conditions (list) – Boolean values corresponding to domains in this rule.

Returns True if rule is satisfied, otherwise False.

rename_domains(domains)
Renames domain types if substitutions are specified in the rule.

The rename dictionary maps domain types to other domain types. For example, an ACP domain in a PKS
matches the same PP-binding domain as a T domain in an NRPS, so to follow the naming convention the
NRPS rule renames ACPs to Ts.

Additionally, rename rules can be nested dicts to allow extra rules. For example, in a PKS-NRPS, the
PP-binding domain in the NRPS module should be named T, not ACP. So, its rule is {‘after’: [‘A’, ‘C’],
‘to’: ‘T’}; any ACP domains after the first A or C will be renamed T.

20 Chapter 3. API Documentation

synthaser, Release 1.0

satisfied_by(domains)
Evaluates this rule against a collection of domains.

Checks that: 1) required domain types are represented in the supplied domains, and 2) domains are of the
desired CDD families, if any are specified.

Placeholders in the evaluator string are then replaced by their respective booleans, and evaluated.

Once a domain in the supplied domains has matched one in the rule, it cannot be matched to another in the
rule. This enables rules based on counts of domains (e.g. multi-modular PKS w/ 2 KS domains).

valid_family(domain)
Checks a given domain matches a specified CDD family in the rule.

If no families have been specified for the given domain type, this function will return True (i.e. any family
of the type is accepted).

This behaviour is controlled by the filters property of a synthaser rule. For example, to restrict a KS domain
to certain CDD families:

"filters": [
"type": "KS",
"domains": ["one", "two"]

]

valid_order(domains: List[synthaser.models.Domain])→ bool
Checks given domains match specified order, if any.

Used for rules where domain order matters, e.g. a hybrid NRPS-PKS vs PKS-NRPS, where NRPS module
comes before PKS and vice versa.

Iterates domain order list, finding earliest matching index in domain list. If the domain is not found, or
the current index is lower than the previous (current domain occurs earlier than previous domain), order is
invalid and False is returned.

class synthaser.classify.RuleGraph(rules=None, graph=None)
A hierarchy of classification rules.

The RuleGraph is used to classify synthases based on their domains. It stores Rule objects, as well as a directed
graph controlling the order and hierarchy of classification.

An example synthaser rule graph looks like this:

[
"Hybrid",
{"PKS": ["HR-PKS", "PR-PKS", "NR-PKS"]},
"NRPS"

]

In this example, the “Hybrid” rule is evaluated first. If unsuccessful, the “PKS” rule is evaluated. If this is
successful, synthaser recurses into child rules, in which case the “HR-PKS”, “PR-PKS” and “NR-PKS” rules
can be evaluated, and so on. Each rule name must have a corresponding entry in the rules attribute.

Note that terminal leaves in the graph are placed in lists, whereas hierarchies are written as dictionaries of lists.
This preserves rule order in Python, as well as preventing empty, unnecessary dictionaries at every level.

rules
Collection of synthaser rules.

Type dict

graph
Hierarchy of synthaser rules for classification.

3.1. API Documentation 21

synthaser, Release 1.0

Type dict

synthaser.classify.classify(synthases, rule_file=None)
Classifies synthases based on defined rules.

If no rule_file is provided, the packaged rules.json will be loaded by default.

Parameters

• synthases (list) – Synthase objects to classify.

• rule_file (str) – Path to custom classification rule file.

synthaser.classify.get_domain_index(query: str, domains: List[synthaser.models.Domain])→
Optional[int]

Finds the earliest index of a domain in a list of domains, if present.

synthaser.classify.traverse_graph(graph, rules, domains, classifiers=None)
Traverses a rule graph and classifies a collection of domains.

Each node is a dictionary with the schema:

{ “title”: “Rule name”, “children”: [

{ “title”: Rule name”, “children”: [. . .],

]

}

Rules are evaluated in order. If a rule is successfully evaluated, this function will recurse into any child rules, if
any exist.

Finally a classification list, containing the path of rules satisfied by the given domains, is returned.

Parameters

• graph (list, dict) – Rule graph to traverse.

• rules (dict) – Rule objects to evaluate on domains.

• domains (list) – Domain objects to classify.

• classifiers (list) – Current classifiers for a Domain collection.

Returns classifiers

3.1.2 synthaser.fasta

This module contains some helper functions for handling FASTA format files/strings.

synthaser.fasta.count(fasta)
Counts sequences in an open FASTA file handle.

Iterates file and counts header lines. Then, seeks to start of the file and returns the count.

Parameters fasta (file pointer) – An open file handle corresponding to a FASTA file.

Returns Total number of sequences in the file.

Return type count (int)

synthaser.fasta.create(header, sequence, limit=80)
Creates a FASTA format string from a header and sequence.

For example:

22 Chapter 3. API Documentation

synthaser, Release 1.0

>>> fasta = create_fasta('header', 'AAAAABBBBBCCCCC', wrap=5)
>>> print(fasta)
>header
AAAAA
BBBBB
CCCCC

Parameters

• header (str) – Name to use in FASTA definition line (i.e. >header).

• sequence (str) – The sequence corresponding to the header.

• limit (int) – Total characters per line before sequence is wrapped.

Returns FASTA format string.

Return type (str)

synthaser.fasta.wrap(sequence, limit=80)
Wraps sequences to limit characters per line.

Parameters

• sequence (str) – Sequence to be wrapped.

• limit (int) – Total characters per line.

Returns Sequence wrapped to maximum limit characters per line.

Return type (str)

3.1.3 synthaser.grouping

This module contains some functions used for grouping Synthase objects by their classifications.

This is used primarily when grouping sequences for the purpose of annotation in the plot (i.e. grouping Synthases of
like classification, at each level in the classification hierarchy). Since annotations need to be drawn from more specific
to less specific, this module generates groups in reverse.

Given a collection of classified Synthase objects, a basic workflow using this module might be:

1. Build a dictionary of synthase headers grouped by classification:

>>> levels = group_synthases(synthases)
>>> levels
defaultdict(<class 'list'>, {'PKS': ['seq1', 'seq2', ...], 'HR-PKS': ['seq1', ...]})

2. Determine the hierarchy of synthase classifications in your synthases.

>>> hierarchy = get_classification_paths(synthases)
>>> hierarchy
{'PKS': {'Type I': {'Non-reducing': {}, 'Highly-reducing': {}, 'Partially-reducing':
→˓{}}}, 'Hybrid': {}}

Note, this is agnostic to our rule files - the rule hierarchy here is built solely from what is stored in each Synthase
object. This also means there should be no redundant classifications.

3. Build an array of annotation groups, each in drawing (i.e. reverse) order.

3.1. API Documentation 23

synthaser, Release 1.0

>>> groups = get_annotation_groups(hierarchy)
>>> groups
[

[
{'classification': 'Partially-reducing', 'depth': 2},
{'classification': 'Highly-reducing', 'depth': 2},
{'classification': 'Non-reducing', 'depth': 2},
{'classification': 'Type I', 'depth': 1},
{'classification': 'PKS', 'depth': 0}

],
[{'classification': 'Hybrid', 'depth': 0}],

]

Since annotations are drawn from more to less specific, and each classification is drawn at some offset to the previous
one, we need some way of differentiating their level - hence the depth property.

synthaser.grouping.build_dict(path, d=None)
Recursively generates a dictionary of dictionaries from a list.

synthaser.grouping.get_classification_paths(synthases)
Determines the hierarchy of synthase classifications.

This hierarchy is used when annotating the plot with classification bars. It should be used in conjunction with
the per-classification synthase dictionary generated using group_synthases().

synthaser.grouping.group_synthases(synthases)
Group synthases by their classifications.

synthaser.grouping.iter_annotation_groups(hierarchy)
Traverses hierarchy and iterates classification groups.

Groups are reverse sorted by depth, such that annotations are drawn from more specific to less specific.

synthaser.grouping.iter_nested_keys(d, depth=0)
Iterates over all keys in a nested dictionary, reporting their depth.

The depth indicates how deeply nested the yielded key is in the dictionary. It is used when annotating the plot
to determine the position of the classification bars.

synthaser.grouping.merge_dicts(a, b)
Recursively merges two dictionaries, allowing overlapping keys.

3.1.4 synthaser.models

This module stores the classes used throughout synthaser.

The Domain class represents a conserved domain hit. It stores the broader domain type, the specific conserved domain
profile name (from CDD), as well as its position in its parent synthase sequence and score from the search. It also
provides methods for slicing the corresponding sequence and serialisation. We can instantiate a Domain object like
so:

>>> from synthaser.models import Domain
>>> domain = Domain(
... type='KS',
... domain='PKS_KS',
... start=756,
... end=1178,
... evalue=0.0,

(continues on next page)

24 Chapter 3. API Documentation

synthaser, Release 1.0

(continued from previous page)

... bitscore=300

...)

and get its sequence given the parent Synthase object sequence:

>>> domain.slice(synthase.sequence)
'MPIAVGM..'

Likewise, the Synthase class stores information about a synthase, including its name, amino acid sequence, Domain
instances and its classification. It also contains methods for generating the domain architecture, extraction of domain
sequences and more. For example, we can instantiate a new Synthase object like so:

>>> from synthaser.models import Synthase
>>> synthase = Synthase(
... header='SEQ001.1',
... sequence='MASGTC...',
... domains=[
... Domain(type='KS'),
... Domain(type='AT'),
... Domain(type='DH'),
... Domain(type='ER'),
... Domain(type='KR'),
... Domain(type='ACP'),
...],
...)

Then, we can generate the domain architecture:

>>> synthase.architecture
'KS-AT-DH-ER-KR-ACP'

Or extract all of the domain sequences:

>>> synthase.extract_domains()
{

"KS_0": "MPIAVGM...",
"AT_0": "VFTGQGA...",
"DH_0": "DLLGVPV...",
"ER_0": "DVEIQVS...",
"KR_0": "IAENMCS...",
"ACP_0": "ASTTVAQ..."

}

The object can also be serialised to JSON (note the Domain object works the same way):

>>> js = synthase.to_json()
>>> with open('synthase.json', 'w') as handle:
... handle.write(js)

and subsequently loaded from JSON:

>>> with open('synthase.json') as handle:
... synthase = Synthase.from_json(handle)

This will internally convert the Synthase object, as well as any Domain objects it contains, to dictionaries, before
converting to JSON using the builtin json library and writing to file. When loading up from JSON, this process is
reversed, and the entries in the file are converted back to Python objects.

3.1. API Documentation 25

synthaser, Release 1.0

class synthaser.models.Domain(pssm=None, type=None, domain=None, start=None, end=None,
evalue=None, bitscore=None, accession=None, superfam-
ily=None)

A conserved domain hit.

type
Broader domain type (e.g. KS)

Type str

domain
Specific CDD family (e.g. PKS_KS)

Type str

start
Start of domain hit in parent sequence

Type int

end
End of domain hit in parent sequence

Type int

evalue
Domain hit E-value

Type float

bitscore
Domain hit bitscore

Type float

accession
CDD accession of domain family

Type str

superfamily
CDD accession of domain superfamily

Type str

slice(sequence)
Slices segment of sequence using the position of this Domain.

Given a Domain:

>>> domain = Domain(type='KS', subtype='PKS_KS', start=10, end=20)

And its corresponding Synthase sequence:

>>> synthase.sequence
'ACGTACGTACACGTACGTACACGTACGTAC'

We can extract the Domain:

>>> domain.slice(synthase.sequence)
'CGTACGTACA'

26 Chapter 3. API Documentation

synthaser, Release 1.0

class synthaser.models.Synthase(header=None, sequence=None, domains=None, classifica-
tion=None)

The Synthase class stores a query protein sequence, its hit domains, and the methods for filtering and classifying.

header
Synthase name.

Type str

sequence
Amino acid sequence of this Synthase.

Type str

domains
Conserved domain hits in this Synthase.

Type list

classification
All classification rules satisfied.

Type list

contains(classes=None, types=None, families=None)
Checks if Synthase contains given classifications, domain families or types.

extract_all_domains()
Extracts all domain sequences from this synthase.

For example, given a Synthase:

>>> synthase = Synthase(
... header='synthase',
... sequence='ACGT...', # length 100
... domains=[
... Domain(type='KS', domain='PKS_KS', start=1, end=20),
... Domain(type='AT', domain='PKS_AT', start=50, end=70)
...]
...)

Then, we can call this function to extract the domain sequences:

>>> synthase.extract_all_domains()
{'KS':['ACGT...'], 'AT':['ACGT...']}

Returns Sequences for each domain in this synthase keyed on domain type.

Return type dict

Raises

• ValueError – If the Synthase has no Domain objects.

• ValueError – If the sequence attribute is empty.

extract_domains(types=None, families=None)
Extract specific domain type/family sequences from this Synthase.

class synthaser.models.SynthaseContainer(synthases)
Simple container class for Synthase objects.

3.1. API Documentation 27

synthaser, Release 1.0

The purpose of this class is to facilitate batch actions on Synthase objects, i.e. serialisation, extraction of domain
sequences, iteration over type/subtype, and printing summaries.

add_sequences(sequences)
Add amino acid sequence to Synthase objects in this container.

append(synthase)
S.append(value) – append value to the end of the sequence

extend(synthases)
S.extend(iterable) – extend sequence by appending elements from the iterable

extract_domains(classes=None, types=None, families=None, by=’sequence’)
Extract domain sequences from Synthase objects in this container.

For example, given a SynthaseContainer containing Synthase objects:

>>> synthases = [Synthase(header='one', ...), Synthase(header='two', ...)]
>>> container = SynthaseContainer(synthases)

Then, the output of this function may resemble:

>>> container.extract_domains()
{'KS': [('one_KS_1', 'IAIA...'), ('two_KS_1', 'IAIE...')], 'AT': [...]}

extract_synthases(classes=None, types=None, families=None)
Bin entire synthase sequences.

classmethod from_sequences(sequences)
Build a SynthaseContainer from a dictionary of query sequences.

to_long(delimiter=’, ’, headers=True)
Generate summary of the container in long data format.

For example:

Synthase Length (aa) Architecture Classification
SEQ001.1 1000 KS-AT-DH-ER-KR-ACP PKS, Type I, Highly-reducing

NOTE: actual output is character delimited, not human readable.

3.1.5 synthaser.ncbi

This module handles all interaction with NCBI.

Given a collection of Synthase objects, a workflow might look like:

1. Launch new CD-Search run

>>> cdsid = ncbi.launch(synthases)
>>> cdsid
QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0

The query sequences are sent to the batch CD-Search API, where a new run is started and assigned a unique CD-Search
identifier (CDSID) which can be used to check on search progress.

Note that search parameters for this search are specified by the values in SEARCH_PARAMS:

28 Chapter 3. API Documentation

synthaser, Release 1.0

>>> ncbi.SEARCH_PARAMS
{

'db': 'cdd',
'smode': 'auto',
'useid1': 'true',
'compbasedadj': '1',
'filter': 'true',
'evalue': '3.0',
'maxhit': '500',
'dmode': 'full',
'tdata': 'hits'

}

which can be freely edited, either directly or by using the set_search_params function.

2. Poll CD-Search API for results using the CDSID

>>> response = ncbi.retrieve(cdsid)

This function repeatedly polls the API at regular intervals until either results or an error has occurred. Internally, this
function calls check(), which takes a CDSID and sends a single request to the API. It returns a Response object (from
the requests library), which will have any search content saved in its text or content properties.

>>> print(response.text)
#Batch CD-search tool NIH/NLM/NCBI
#cdsid QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0
#datatype hitsFull Results
#status 0
#Start time 2019-09-03T04:21:23 Run time 0:00:04:23
#status success

3. Parse results and create Synthase objects

>>> from synthaser import results
>>> handle = results.text.split("\n")
>>> synthases = results.parse(handle)

Additionally, this module provides efetch_sequences, a function for fetching sequences from NCBI from a collection
of accessions. For example:

>>> ncbi.efetch_sequences(['CBF71467.1', 'XP_681681.1'])
{'CBF71467.1': 'MQSAGMHRATA...', 'XP_681681.1': 'MQDLIAIVGSA...'}

The accessions are sent to the NCBI’s Entrez API, which returns the sequences in FASTA format. They are parsed
using fasta.parse, and the resulting dictionary is returned.

synthaser.ncbi.check(cdsid)
Checks the status of a running CD-search job.

CD-Search runs are assigned a unique search ID, which typically take the form:

QM3-qcdsearch-xxxxxxxxxxx-yyyyyyyyyyy

This function queries NCBI for the status of a running CD-Search job corresponding to the search ID specified
by cdsid.

>>> response = check('QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0')

3.1. API Documentation 29

synthaser, Release 1.0

If the job has finished, this function will return the requests.Response object which contains the run
results. If the job is still running, this function will return None. If an error is encountered, a ValueError will be
thrown with the corresponding error code and message.

Parameters cdsid (str) – CD-search identifier (CDSID).

Returns If the job has completed and is ready for download False: If the job is still running

Return type True

Raises

• ValueError – If the returned results file has a successful status code but is actually empty
(i.e. contains no results), perhaps due to an invalid query.

• ValueError – When a status code of 1, 2, 4 or 5 is returned from the request.

synthaser.ncbi.efetch_sequences(headers)
Retrieve protein sequences from NCBI for supplied accessions.

This function uses EFetch from the NCBI E-utilities to retrieve the sequences for all synthases specified in
headers. It then calls fasta.parse to parse the returned response; note that extra processing has to occur because
the returned FASTA will contain a full sequence description in the header line after the accession.

Parameters headers (list) – A collection of NCBI sequence identifiers (accession, GI, etc)

Returns Sequences downloaded from NCBI

Return type sequences (dict)

synthaser.ncbi.get_results(cdsid)
Downloads results corresponding to a CDSID.

Parameters cdsid (str) – CD-Search identifier

Returns Response object containing search results

Return type requests.Response

Raises ValueError – If response has bad status code

synthaser.ncbi.launch(query)
Launches a new CDSearch run.

Parameters query (Synthase, SynthaseContainer) – Synthase objects to be searched.
This could either be a single Synthase object or a SynthaseContainer; other objects could be
used as long as they implement a to_fasta method.

Returns CDSearch ID (CDSID) corresponding to the new run. This takes the form: QM3-
qcdsearch-XXXXXXXXXXXXXXXX-YYYYYYYYYYYYYYY.

Return type cdsid (str)

Raises

• AttributeError – query has no to_fasta method

• AttributeError – No CDSID was returned from NCBI

synthaser.ncbi.retrieve(cdsid, max_retries=-1, delay=20)
Poll CDSearch for results.

This method queries the NCBI for results from a CDSearch job corresponding to the supplied cdsid. If
max_retries is -1, this function will check for results every delay interval until something is returned.

If you wish to save the results of a CD-Search run to file, you can supply an open file handle via the output
parameter:

30 Chapter 3. API Documentation

synthaser, Release 1.0

>>> with open('results.tsv', 'w') as results:
... retrieve(
... 'QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0',
... output=results
...)

This function returns the Response object returned by check():

>>> response = retrieve('QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0')
>>> print(response.text)
#Batch CD-search tool NIH/NLM/NCBI
#cdsid QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0
#datatype hitsFull Results
#status 0
...

Parameters

• cdsid (str) – CD-search job ID. Looks like QM3-qcdsearch-xxxxxxxxxxx-yyyyyyyyyyy.

• output (file pointer) – Save results to a given open file handle instead of a local
file. This facilitates usage of e.g. tempfile objects.

• max_retries (int) – Maximum number of retries for checking job completion. If -1 is
given, this function will keep paging for results until something is returned.

• delay (int) – Number of seconds to wait between each request to the NCBI. The wait
time is re-calculated to this value each time, based on the time taken by the previous request.
By default, this is set to 20; giving a value less than 10 will result in a ValueError being
thrown.

Returns Response returned by the check()

Return type (requests.models.Response)

Raises

• ValueError – If delay is less than 10.

• ValueError – If no Response is returned by check()

synthaser.ncbi.set_search_params(database=None, smode=None, useid1=None, comp-
basedadj=None, filter=None, evalue=None, maxhit=None,
dmode=None)

Set CD-Search search parameters.

All search parameters are stored in SEARCH_PARAMS; this can either be edited directly, or through this
function, prior to a search.

Parameters

• database (str) – Name of search database. Available options are ‘cdd’ (default), ‘pfam’,
‘smart’, ‘tigrfam’, ‘cog’ and ‘kog’. Only applies when smode is live.

• smode (str) – Search mode; ‘auto’ (automatic), ‘prec’ (precalculated only) or ‘live’ (live
searches).

• useid1 (str) – Search archived sequences (‘true’ or ‘false’)

• compbasedadj (str) – Composition-corrected scoring (‘0’ or ‘1’)

• filter (str) – Filter out compositionally biased regions (‘true’ or ‘false’)

3.1. API Documentation 31

synthaser, Release 1.0

• evalue (float) – E-value cutoff

• maxhit (int) – Maximum number of hits per query

• dmode (str) – Data mode of output (‘rep’, ‘std’, or ‘full’)

For a full description of parameters, refer to the NCBI’s documentation.

3.1.6 synthaser.plot

This modules handles the construction of synthaser visualisations.

synthaser plots are implemented as HTML documents with embedded visualisations created using the D3 JavaScript
library. Files used in this process are all stored separately inside the plot folder in the source code (i.e. separate CSS,
JavaScript, HTML).

This module provides two ways to construct a synthaser plot from a collection of Synthase objects: hosting using
Python’s built in socketserver module, or generating a completely static HTML file containing all code elements
necessary for the plot.

1. Get necessary data

>>> data = plot.get_data(synthases)

This generates a dictionary which can be converted easily to JSON and given to the JavaScript visualisation. It contains
a dictionary of the Synthase objects, the order in which they should be drawn, a dictionary of Synthase objects grouped
by their classifications, and the annotation group hierarchy generated using grouping.get_annotation_groups().

2. a) Dynamically serve plots using socketserver

>>> plot.serve_html(data)

This will host the visualisation on some randomly chosen open port on localhost. It requires a keyboard interrupt to
stop serving the plot.

2. b) Generate static HTML file

>>> plot.save_html(data, "myoutput.html")

This will generate a completely static HTML file containing all code elements required to render the plot (JavaScript
and CSS embedded directly in the HTML file). This can then be moved/copied anywhere you would like.

This workflow is mirrored by the plot_synthases function:

>>> plot.plot_synthases(synthases, output="myoutput.html")

class synthaser.plot.CustomHandler(data, *args, **kwargs)
Handler for serving cblaster plots.

do_GET()
Serves each component of the cblaster plot.

log_message(format, *args)
Suppresses logging messages on every request.

synthaser.plot.plot_synthases(container, output=None)
Generates synthaser plot from a collection of Synthase objects.

synthaser.plot.save_html(data, output)
Generates a static HTML file with all visualisation code.

32 Chapter 3. API Documentation

https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd_help.shtml#BatchRPSBSearchParameters

synthaser, Release 1.0

synthaser.plot.serve_html(data)
Serve a synthaser plot using the socketserver module.

3.1.7 synthaser.results

This module stores functions for parsing CD-Search output.

All functionality is provided by parse, which takes an open file handle corresponding to a CD-Search hit table and
returns a list of fully characterized Synthase objects, i.e.:

>>> from synthaser import results
>>> with open('results.txt') as handle:
... synthases = results.parse(handle)
>>> synthases
[AN6791.2 KS-AT-DH-MT-ER-KR-ACP, ...]

synthaser uses the results.DOMAINS dictionary to control which domain families, and the quality thresholds (length,
bitscore) they must meet, to save in any given search. This can be edited directly using update_domains, or loaded
from a JSON file using load_domain_json. An entry in this dictionary may look like:

For further details on how to obtain these values and use a custom domain file, please refer to the user guide.

synthaser.results.choose_representative_domain(group, by=’evalue’)
Select the best domain from a collection of overlapping domains.

This function tests rules stored in special_rules, which are lambdas that take two variables. It sorts the group
by e-value, then tests each rule using the container (first, best scoring group) against all other Domains in the
group.

If any test is True, the container type is set to the rule key and returned. Otherwise, this function will return the
container Domain with no modification.

Parameters

• group (list) – Overlapping Domain objects

• by (str) – Measure to use when determining the best domain of the group. Choices:
‘bitscore’: return domain with highest bitscore (relative to threshold) ‘evalue’: return do-
main with lowest E-value ‘length’: return longest domain hit

Returns Highest scoring Domain in the group. If any special rules have been satisfied, the type of
this Domain will be set to that rule (e.g. Condensation -> Epimerization).

Return type Domain

synthaser.results.domain_from_row(row)
Parse a domain hit from a row in a CD-search results file.

For example, a typical row might looks like:

>>> print(row)
Q#1 - >AN6791.2 specific 225858 9 1134 0 696.51
→˓COG3321 PksD - cl09938

Using this function will generate:

>>> domain_from_row(row)
PksD [KS] 9-1134

Parameters row (str) – Tab-separated row from a CDSearch results file

3.1. API Documentation 33

synthaser, Release 1.0

Returns Instance of the Domain class containing information about this hit

Return type Domain

Raises ValueError – If the domain in this row is not in the DOMAINS dictionary.

synthaser.results.filter_domains(domains, by=’evalue’, coverage_pct=0.5, toler-
ance_pct=0.1)

Filter overlapping Domain objects and test adjcency rules.

Adjacency rules are tested again here, in case they are missed within overlap groups. For example, the NRPS-
para261 domain is not always entirely contained by a condensation domain, so should be caught by this pass.

Parameters

• domains (list) – Domain instances to be filtered

• by (str) – Metric used to choose representative domain hit (def. ‘evalue’)

• coverage_pct (float) – Conserved domain coverage percentage threshold

• tolerance_pct (float) – CD length tolerance percentage threshold

Returns Domain objects remaining after filtering

Return type list

synthaser.results.filter_results(results, **kwargs)
Build Synthase objects from a parsed results dictionary.

Any additional kwargs are passed to _filter_domains.

Parameters results (dict) – Grouped Domains; output from _parse_cdsearch_table.

Returns Synthase objects containing all Domain objects found in the CD-Search.

Return type synthases (list)

synthaser.results.group_overlapping_hits(domains)
Iterator that groups Domain objects based on overlapping locations.

Parameters domains (list) – Collection of Domain objects belonging to a Synthase

Yields group (list) – Group of overlapping Domain objects

synthaser.results.is_fragmented_domain(one, two, coverage_pct=0.5, tolerance_pct=0.1)
Detect if two adjacent domains are likely a single domain.

This is useful in cases where a domain is detected with multiple small hits. For example, an NRPS may have two
adjacent condensation (C) domain hits that are both individually too small and low-scoring, but should likely
just be merged.

If two hits are close enough together, such that the distance between the start of the first and end of the second
is within some tolerance (default +-10%) of the total length of a domains PSSM, this function will return True.

Parameters

• one (Domain) – Domain instance

• two (Domain) – Domain instance

• coverage_pct (float) – Conserved domain hit percentage coverage threshold. A hit
is considered truncated if its total length is less than coverage_pct * CD length.

• tolerance_pct (float) – Percentage of CD length to use when calculating acceptable
lower/upper bounds for combined domains.

34 Chapter 3. API Documentation

synthaser, Release 1.0

Returns Domain instances are likely fragmented and should be combined. False: Domain instances
should be separate.

Return type True

synthaser.results.load_domains(rule_file)
Loads domains from a synthaser rule file.

Rule file domain schema: {

‘name’: KS, ‘domains’: [

{ ‘accession’: ‘smart00825’, ‘name’: ‘PKS_KS’ . . .

}

This function flattens the domain type array to create a dictionary of domain families, so these can be easily
looked up directly from CD-Search rows.

synthaser.results.parse(handle, mode=’remote’, **kwargs)
Parse CD-Search results.

Any additional kwargs are passed to synthases_from_results.

Parameters

• handle (file) – An open CD-Search results file handle. If you used the website to
analyse your sequences, the file you should download is Domain hits, Data mode: Full,
ASN text. When using a CDSearch object, this format is automatically selected.

• mode (str) – Search mode (‘local’ or ‘remote’)

Returns A list of Synthase objects parsed from the results file.

Return type list

Raises ValueError – Search mode not ‘local’ or ‘remote’

synthaser.results.parse_cdsearch(handle)
Parse a CD-Search results table and instantiate Domain objects for each hit.

Parameters handle (file) – Open file handle corresponding to a CD-Search results file.

Returns Lists of Domain objects keyed on the query they were found in.

Return type results (dict)

synthaser.results.parse_rpsbproc(handle)
Parse a results file generated by rpsblast->rpsbproc.

This function takes a handle corresponding to a rpsbproc output file. local.rpsbproc returns a subpro-
cess.CompletedProcess object, which contains the results as byte string in it’s stdout attribute.

3.1.8 synthaser.rpsblast

This module provides functionality for setting up and performing local synthaser searches using RPS-BLAST and
rpsbproc. RPS-BLAST (Reverse PSI-BLAST) searches query sequences against databases of domain family profiles,
and rpsbproc is used to post-process the raw results into something resembling results from an online CD-Search run.
If synthaser cannot find either program on the system $PATH, it will raise an exception. For details on installing
RPS-BLAST and rpsbproc, please refer to the user guide.

A basic search can be performed using the search function:

3.1. API Documentation 35

synthaser, Release 1.0

>>> rpsblast.search("sequences.fasta", "Cdd_LE", cpu=4)

This will automatically search the sequences in sequences.fasta against the Cdd_LE using RPS-BLAST and
process the raw results using rpsbproc, resulting in Response object which be readily parsed like in a remote CD-
Search.

A profile database can be downloaded using the download_database function, e.g.:

>>> path = rpsblast.download_database("my_folder", flavour="Cdd")

This will connect to the NCBI’s FTP and download the “Cdd” database (the complete database). The downloaded file
will be a .tar archive, which can be extracted using untar:

>>> untarred_path = rpsblast.untar(path)

Alternatively, just use getdb to do both steps at once:

>>> rpsblast.getdb("Cdd", "myfolder")

synthaser.rpsblast.get_program_path(program)
Get full path to a program on system PATH.

synthaser.rpsblast.rpsblast(query, database, cpu=2)
Run rpsblast on a query file against a database.

synthaser.rpsblast.rpsbproc(results)
Convert raw rpsblast results into CD-Search results using rpsbproc.

Note that since rpsbproc is reliant upon data files that generally are installed in the same directory as the exe-
cutable (and synthaser makes no provisions for them being stored elsewhere), we must make sure we have the
full path to the original executable. If it is called via e.g. symlink, rpsbproc will not find the data files it requires
and throw an error.

The CompletedProcess returned by this function contains a standard CD-Search results file, able to be parsed
directly by the results module.

synthaser.rpsblast.search(query, database, cpu=2)
Convenience function for running rpsblast and rpsbproc.

3.1.9 synthaser.search

This module serves as the starting point for synthaser, preparing input and dispatching it to either local or remote
searches.

In any given search, input can either be a FASTA file or a collection of NCBI sequence identifiers. The prepare_input
function is used to generate a SynthaseContainer object from either source which can then be used as a query. For
example:

>>> sc1 = search.prepare_input(query_ids=["SEQ001.1", "SEQ002.1"])
>>> sc2 = search.prepare_input(query_file="my_sequences.fasta")

If query_ids are used, the sequences are first retrieved using NCBI Entrez using ncbi.efetch_sequences().

A full synthaser search can be performed using the search function. This prepares the input (ids or FASTA) as above,
then launches local and remote searches using the ncbi and rpsblast modules, respectively. Results are then parsed
using the results module, and classified using the classify module. Lastly, the SynthaseContainer object which was
created inside this function is returned.

36 Chapter 3. API Documentation

synthaser, Release 1.0

>>> sc = search.search(query_file="my_sequences.fasta")

To use custom domain and classification rules, simply provide the paths to each file to the search function:

>>> sc = search.search(
... query_file="my_sequences.fasta",
... domain_file="my_domains.json",
... classify_file="my_rules.json",
...)

Previous searches are stored in the SEARCH_HISTORY variable, and can be summarised using the history function:

>>> ncbi.history()
1. Run ID: QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0

Parameters:
db: cdd

smode: auto
useid1: true

compbasedadj: 1
filter: true
evalue: 3.0
maxhit: 500
dmode: full
tdata: hits

This module contains routines for performing local/remote searches.

synthaser.search.history()
Print out summary of previously saved CD-Search runs. :raises: ValueError – If SEARCH_HISTORY is
empty (i.e. no searches have been run)

synthaser.search.prepare_input(query_ids=None, query_file=None)
Generate a SynthaseContainer from either query IDs or a query file.

Returns Synthase objects for query sequences

Return type SynthaseContainer

Raises ValueError – Neither query_ids nor query_file provided

synthaser.search.search(mode=’remote’, query_ids=None, query_file=None, rule_file=None, clas-
sify_file=None, results_file=None, cdsid=None, delay=20, max_retries=-
1, database=None, cpu=2, **kwargs)

Run a synthaser search.

CD-Search parameters can be given as kwargs which are passed on to _remote.

Parameters

• mode (str) – synthaser search mode (‘local’ or ‘remote’)

• query_ids (str, file) – NCBI sequence identifiers to analyse

• query_file (file) – Open FASTA file handle

• rule_file (file) – Custom rule JSON file to use when parsing results

• results_file (file) – Results file from a previous CDSearch/RPSBLAST search

• cdsid (str) – CDSearch ID from a previous search

• delay (int) – Time delay (s) between polling NCBI for results (def. 20)

3.1. API Documentation 37

synthaser, Release 1.0

• max_retries (int) – Maximum number of polling attempts before exiting (def. -1)

• database (str) – rpsblast database to use in local searches

• cpu (int) – Number of threads to use in rpsblast

Returns Synthase objects representing query sequences

Return type SynthaseContainer

Raises ValueError – Too many sequences provided (NCBI limit = 4000)

38 Chapter 3. API Documentation

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

39

synthaser, Release 1.0

40 Chapter 4. Indices and tables

Python Module Index

s
synthaser.classify, 20
synthaser.fasta, 22
synthaser.grouping, 24
synthaser.models, 25
synthaser.ncbi, 29
synthaser.plot, 32
synthaser.results, 33
synthaser.rpsblast, 36
synthaser.search, 37

41

synthaser, Release 1.0

42 Python Module Index

Index

A
accession (synthaser.models.Domain attribute), 26
add_sequences() (syn-

thaser.models.SynthaseContainer method),
28

append() (synthaser.models.SynthaseContainer
method), 28

B
bitscore (synthaser.models.Domain attribute), 26
build_dict() (in module synthaser.grouping), 24

C
check() (in module synthaser.ncbi), 29
choose_representative_domain() (in module

synthaser.results), 33
classification (synthaser.models.Synthase at-

tribute), 27
classify() (in module synthaser.classify), 22
contains() (synthaser.models.Synthase method), 27
count() (in module synthaser.fasta), 22
create() (in module synthaser.fasta), 22
CustomHandler (class in synthaser.plot), 32

D
do_GET() (synthaser.plot.CustomHandler method), 32
Domain (class in synthaser.models), 25
domain (synthaser.models.Domain attribute), 26
domain_from_row() (in module synthaser.results),

33
domains (synthaser.classify.Rule attribute), 20
domains (synthaser.models.Synthase attribute), 27

E
efetch_sequences() (in module synthaser.ncbi), 30
end (synthaser.models.Domain attribute), 26
evaluate() (synthaser.classify.Rule method), 20
evaluator (synthaser.classify.Rule attribute), 20
evalue (synthaser.models.Domain attribute), 26

extend() (synthaser.models.SynthaseContainer
method), 28

extract_all_domains() (syn-
thaser.models.Synthase method), 27

extract_domains() (synthaser.models.Synthase
method), 27

extract_domains() (syn-
thaser.models.SynthaseContainer method),
28

extract_synthases() (syn-
thaser.models.SynthaseContainer method),
28

F
filter_domains() (in module synthaser.results), 34
filter_results() (in module synthaser.results), 34
filters (synthaser.classify.Rule attribute), 20
from_sequences() (syn-

thaser.models.SynthaseContainer class
method), 28

G
get_classification_paths() (in module syn-

thaser.grouping), 24
get_domain_index() (in module synthaser.classify),

22
get_program_path() (in module syn-

thaser.rpsblast), 36
get_results() (in module synthaser.ncbi), 30
graph (synthaser.classify.RuleGraph attribute), 21
group_overlapping_hits() (in module syn-

thaser.results), 34
group_synthases() (in module syn-

thaser.grouping), 24

H
header (synthaser.models.Synthase attribute), 27
history() (in module synthaser.search), 37

43

synthaser, Release 1.0

I
is_fragmented_domain() (in module syn-

thaser.results), 34
iter_annotation_groups() (in module syn-

thaser.grouping), 24
iter_nested_keys() (in module syn-

thaser.grouping), 24

L
launch() (in module synthaser.ncbi), 30
load_domains() (in module synthaser.results), 35
log_message() (synthaser.plot.CustomHandler

method), 32

M
merge_dicts() (in module synthaser.grouping), 24

N
name (synthaser.classify.Rule attribute), 20

P
parse() (in module synthaser.results), 35
parse_cdsearch() (in module synthaser.results), 35
parse_rpsbproc() (in module synthaser.results), 35
plot_synthases() (in module synthaser.plot), 32
prepare_input() (in module synthaser.search), 37

R
rename_domains() (synthaser.classify.Rule method),

20
retrieve() (in module synthaser.ncbi), 30
rpsblast() (in module synthaser.rpsblast), 36
rpsbproc() (in module synthaser.rpsblast), 36
Rule (class in synthaser.classify), 20
RuleGraph (class in synthaser.classify), 21
rules (synthaser.classify.RuleGraph attribute), 21

S
satisfied_by() (synthaser.classify.Rule method), 20
save_html() (in module synthaser.plot), 32
search() (in module synthaser.rpsblast), 36
search() (in module synthaser.search), 37
sequence (synthaser.models.Synthase attribute), 27
serve_html() (in module synthaser.plot), 32
set_search_params() (in module synthaser.ncbi),

31
slice() (synthaser.models.Domain method), 26
start (synthaser.models.Domain attribute), 26
superfamily (synthaser.models.Domain attribute), 26
Synthase (class in synthaser.models), 26
SynthaseContainer (class in synthaser.models), 27
synthaser.classify (module), 20
synthaser.fasta (module), 22

synthaser.grouping (module), 24
synthaser.models (module), 25
synthaser.ncbi (module), 29
synthaser.plot (module), 32
synthaser.results (module), 33
synthaser.rpsblast (module), 36
synthaser.search (module), 37

T
to_long() (synthaser.models.SynthaseContainer

method), 28
traverse_graph() (in module synthaser.classify), 22
type (synthaser.models.Domain attribute), 26

V
valid_family() (synthaser.classify.Rule method), 21
valid_order() (synthaser.classify.Rule method), 21

W
wrap() (in module synthaser.fasta), 23

44 Index

	Features
	User guide
	User guide

	API Documentation
	API Documentation

	Indices and tables
	Python Module Index
	Index

