

synthaser

Welcome to synthaser’s documentation!

synthaser is a tool for the characterisation and classificiation of the
domain architecture of protein sequences. It leverages the NCBI’s conserved domain
(CD) search tool, CD-Search, for comphrehensive, fully remote domain searches, and
automatically characterises and classifies sequences based on user-defined rules.

To view an example of what synthaser can produce, click the image below:

[image: Example synthaser output]

Features

	Fully remote searches using the NCBI’s CD-Search API

	Automatic characterisation and classification of protein sequences based on
user-defined rules

	Fully interactive visualisations which can be tweaked and saved to SVG

User guide

Get started using synthaser.

	User guide
	Installation
	Python version

	Dependencies

	Other dependencies

	Installation

	Installing RPS-BLAST and rpsbproc

	Quickstart
	Pre-search configuration using the config module

	Running a synthaser search using the search module

	The synthaser plot

	Creating custom rule sets
	Identifying domain ‘islands’

	Creating domain types

	Creating classification rules

	Classification rule evaluation hierarchy

	Using the rule file

	Miscellaneous modules
	getdb

	getseq

	extract

	genbank

API Documentation

The following pages detail all synthaser modules.

	API Documentation
	synthaser.classify

	synthaser.fasta

	synthaser.grouping

	synthaser.models

	synthaser.ncbi

	synthaser.plot

	synthaser.results

	synthaser.rpsblast

	synthaser.search

Indices and tables

	Index

	Module Index

	Search Page

User guide

	Installation
	Python version

	Dependencies

	Other dependencies

	Installation

	Installing RPS-BLAST and rpsbproc

	Quickstart
	Pre-search configuration using the config module

	Running a synthaser search using the search module

	The synthaser plot

	Creating custom rule sets
	Identifying domain ‘islands’

	Creating domain types

	Creating classification rules

	Classification rule evaluation hierarchy

	Using the rule file

	Miscellaneous modules
	getdb

	getseq

	extract

	genbank

Installation

This section of the documentation covers the installation of synthaser.

Python version

synthaser is written using Python 3, and should work with any version above 3.3.

Dependencies

These packages are automatically installed when installing cblaster:

	requests [https://requests.readthedocs.io/en/master/]

	biopython [https://biopython.org/]

Other dependencies

	RPS-BLAST is the search tool used in local cblaster searches

	rpsbproc is used to post-process RPS-BLAST results to remove redundant hits and
fill in information about domain families like in the web CD-Search tool

Installation

	(Optional) Create a new virtual environment

python3 -m virtualenv venv
source venv/bin/activate

This will create (and activate) a sandboxed environment where you can install
Python packages separately to those available on your system. This isn’t necessarily
required, but is recommended.

	Install synthaser

The easiest way to obtain synthaser is to install it directly from PyPI using pip:

pip install synthaser

This will install synthaser, as well as all of its required dependencies.
Alternatively, you could clone the cblaster repository from GitHub and
install it like so:

git clone https://www.github.com/gamcil/synthaser
cd synthaser
pip install .

This will download the latest version of cblaster and install it from the downloaded
folder, rather than from PyPI.

synthaser should now be available directly on your terminal:

$ synthaser -h
usage: synthaser [-h] [--version] {getdb,getseq,search} ...
synthaser: a Python toolkit for analysing domain architecture of secondary metabolite megasynth (et) ases with NCBI CD-Search.

positional arguments:
 {getdb,getseq,search}
 getdb Download a CDD database for local searches
 getseq Download sequences from NCBI
 search Run a synthaser search

optional arguments:
 -h, --help show this help message and exit
 --version show program's version number and exit

Cameron L.M. Gilchrist 2020

Installing RPS-BLAST and rpsbproc

RPS-BLAST is a distributed in the NCBI’s BLAST+ toolkit. This can be acquired
either directly from NCBI’s FTP [ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/] or from your distributions repositories, for example
in Ubuntu: sudo apt install ncbi-blast+.

To install rpsbproc, follow these steps:

	Acquire the relevant archive for your system from the CDD FTP [ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/rpsbproc/].

	Extract the contents

3. Acquire the data files required by rpsbproc either by running
utils/getcdddata.sh, or directly from the FTP as detailed by the README
(see: domain-annotation files). The program does NOT require you to
download all of the domain databases. So, if doing the former, you can
chttps://www.circles.life/au/plan/ancel the run after the necessary files are in data/, then delete db/
and the database .tar.gz files.

4. Make sure the rpsbproc binary file is on your system $PATH.
This is a requirement of synthaser, as it will throw an error if it
cannot find rpsbproc directly on the $PATH (i.e. accessable in terminal
just by typing ‘rpsbproc’).

Quickstart

This section of the documentation gives a brief overview of how to get started using
synthaser and a broad overview of its features.

Pre-search configuration using the config module

The NCBI requires that you provide some identification before using their
services in order to prevent abuse. This can be an e-mail address, or more recently,
an API key (https://ncbiinsights.ncbi.nlm.nih.gov/2017/11/02/new-api-keys-for-the-e-utilities/).

You can use the config module to set these parameters for synthaser searches (you’ll only have to do this once!).
This module will save a file, config.ini, wherever your operating system stores configuration
files (for example, in Linux it will be saved in ~/.local/config/synthaser).
When you run remote searches in synthaser, it will first check to see if it can find
this file, and then if an e-mail address or API key is saved; if they are not found,
synthaser will throw an error.

To set an e-mail address:

$ synthaser config --email "foo@bar.com"

…or an API key:

$ synthaser config --api_key <your API key>

Running a synthaser search using the search module

Once configured, a synthaser search is as easy as:

synthaser search --query_file sequences.fasta

This will take all sequences in sequences.fasta and start a remote CD-Search run.

Note

Most of the arguments used with synthaser have shorter forms which can be found
in the help menus (e.g. synthaser search --help). For example, the short version
of --query_file here is -qf.

Alternatively, you can use the -qi/--query_ids argument to start a search using just
a collection of NCBI identifiers. For example:

synthaser search -qi KAF4294870.1 KAF4294328.1 KAF4293514.1

This will retrieve each sequence and start a remote CD-Search run.

There are several optional arguments you can use which control the output synthaser will generate.
To generate a synthaser plot of your sequences, add the -p/--plot argument, optionally
specifying a name to generate a portable HTML file:

synthaser search -qf sequences.fasta -p <plot.html>

The plot will then open directly in your web browser.

You can save a file containing the data of a synthaser search by using the -json,
--json_file argument:

synthaser search -qf sequences.fasta -json session.json

This is particularly useful in larger searches, as the search won’t have to be
completely redone if you want to e.g. generate a new visualisation or output table.
If the file specified does not exist, synthaser will create it; if it does exist,
synthaser will attempt to load it.

The default output will show your query sequences and their domain architectures,
grouped by their classifications. For example, the search using --query_ids from
above produces:

PKS --> Type I --> Partially-reducing

KAF4294870.1 KS-AT-DH-MT-KR-ACP

Thiolase

KAF4293514.1 KS
KAF4294328.1 KS

You can make this tabular by using the -lf, --long_form argument, which will produce
a comma-separated output like:

Synthase,Length (aa),Architecture,Classification
KAF4294870.1,2445,KS-AT-DH-MT-KR-ACP,PKS|Type I|Partially-reducing
KAF4294328.1,413,KS,Thiolase
KAF4293514.1,419,KS,Thiolase

Where each row contains the sequence, its length, domain architecture and classification.
This can then be directly imported into spreadsheet software.

Another very useful argument is --cdsid. This allows you to resume or load a
CD-Search run at a later time. The CDSID (CD-Search identifier) is reported by
synthaser at the start of every search, and takes the form:

QM3-qcdsearch-XXXXXXXXXXXXXXX-YYYYYYYYYYYYYYYY

For example, in the output of the above search:

[14:57:52] INFO - Starting synthaser
[14:57:56] INFO - Launching new CD-Search run
[14:57:58] INFO - Run ID: QM3-qcdsearch-894E2B07233244A-1C6342BEDF36CB85

When I then wanted the tabular output, I could simply re-use the CDSID:

synthaser search \
 --query_ids KAF4294870.1 KAF4294328.1 KAF4293514.1 \
 --cdsid QM3-qcdsearch-894E2B07233244A-1C6342BEDF36CB85 \
 --long_form

CD-Search parameters can be altered using the following arguments:

	Argument

	Description

	--cdsid

	CD-Search run ID (e.g. QM3-qcdsearch-XXXXXXXXXXXXXXX-YYYYYYYYYYYYYYYY).

	--smode

	Search mode (auto, prec or live; def. auto)

	--useid1

	Look for sequences in archival database if not found (def. true)

	--compbasedadj

	Use composition-corrected scoring (def. 1)

	--filter

	Filter out compositionally biased regions from queries (def. true)

	--evalue

	Maximum E-value (def. 3)

	--maxhit

	Maximum number of hits to return (def. 500)

	--dmode

	Level of hits to report (full, rep or std; def. full)

For a fuller explanation of these arguments, see the NCBI documentation here [https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd_help.shtml].

The synthaser plot

The synthaser plot is fairly intuitive, but deserves a little explanation of its own.
Here is what the search above looks like plotted:

[image: synthaser plot]
Query sequences are drawn to scale, with coloured boxes representing the domains that
were found. Sequences are grouped by their classifications, and annotation bars for
classifications are drawn in the appropriate locations automatically.
This looks a not nicer when you have more sequences covering more classifications!

Hovering over a domain box in a sequence will show a tooltip menu that looks like:

[image: domain tooltip]
This shows you a summary of the best domain family hit, with linkouts to their
corresponding entries in the NCBI databases. You can also copy amino acid sequences of either
the entire query or just the specific domain by clicking the buttons at the bottom.

The legend contains a list of the domains found in all of your sequences next to a box
with the corresponding colour. This colour can be changed simply by clicking the box and
selecting another colour.

Sequences can be hidden by clicking on their names. If a sequence containing the last
occurrence of a specific domain in the plot is hidden, that domain will automatically be
removed from the legend as well.

Sizing and positioning of plot elements can be controlled by the settings in the
dropdown menu on the right hand side of the plot. In the above image, the only change
from default was the maximum sequence length (in pixels); by default, this is set to 600
px.

You can generate FASTA files containing extracted sequences of specific domain types
from your sequences using the Download domain sequences section at the bottom of the
dropdown menu. Simply select a domain type and click the Download! button.

Once you are happy with your figure, you can download a SVG image file by clicking the
Save SVG button at the top of the menu.

Creating custom rule sets

synthaser uses a central rule file which controls which domains it will save in domain
architecture predictions, as well as how sequences get classified based on those domain
architectures.

The default rule file distributed in the package is meant for the analysis of fungal
megasynthases (polyketide synthases, fatty acid synthases and nonribosomal peptide
synthetases). However, this can be repurposed for the analysis of any other multidomain
protein very easily using our web application [https://gamcil.github.io/synthaser/].

What follows is a brief description of how synthaser uses the rule file at the various
stages of its workflow.

Identifying domain ‘islands’

The problem synthaser aims to solve is best demonstrated in the following image:

[image: 'Islands' corresponding to distinct domains in CD-Search results]
This is the result of a CD-Search run using a hybrid polyketide synthase-nonribosomal
peptide synthetase sequence as a query. Within this visualisation, you can see all of
the domain hits found in the sequence during the search, as well as their positions
within the sequence.

These domain hits very clearly fall into distinct ‘islands’ (indicated by blue boxes)
with other, related domain hits. In this image, the domain islands correspond to the
domain architecture of the synthase, KS-AT-DH-MT-KR-ACP-C-A-T-R.

While this is easy to figure out manually by looking at the visualisation, we often want
to analyse larger numbers of these sequences (e.g. when looking at full fungal
genomes), which quickly makes this manual approach prohibitive. This is where synthaser
comes in.

Creating domain types

The first element of the synthaser rule file is the list of domain ‘types’ that we
want synthaser to find in the CD-Search results. Each domain type is given a
name as well as a list of specific domain families which correspond to the type.

Thinking back to the domain islands example above, we may wish to create a domain type
called KS, which consists of the domain families PKS and PKS_KS (the top-scoring
domain families in the search). This would indicate to the synthaser that whenever it
finds hits for either PKS or PKS_KS domains, they should be saved and categorised
as KS domains.

These can be edited in the leftmost pane in the web application:

[image: Domain types pane in the synthaser web application]
As mentioned, we first give the domain type a name (e.g. C), then we choose a list of
specific domain families (e.g. C_PKS-NRPS, Condensation). You can directly search for
families in this box by accession or name.

Creating classification rules

Once synthaser has identified the domains in a query sequence and predicted its domain
architecture, the next task is classification. As with the domain identification step,
while we can easily determine domain architecture directly from the visual output
and tell what type of synthase we have, the difficulty comes when we want to analyse
more than a single sequence at a time.

These can be edited in the Classification rules pane of the web application:

[image: PKS-NRPS classification rule in the synthaser web application]
This picture shows the rule for classifying a PKS-NRPS sequence. It consists of:

	A name, given to a sequence when the rule is evaluated succesfully (Hyrid
PKS-NRPS).

	A list of domain types chosen from a multi-selection box populated by domain types
created in the Domain types pane (KS, A, C, ACP, TR).

	An evaluation expression which checks for presence of key domains for this rule
(0 for KS, 1 for A and 2 for C). This rule will be satisfied if a sequence
has a KS domain AND either an A OR C domain.

	A renaming rule which specifies that a domain type should be renamed in a specific
circumstance due to convention (a TR domain, if found after a C or A domain, is
renamed to R).

The only thing this rule does not have is domain filters, which would control the
specific domain families that should be saved for a domain type. In the fungal ruleset,
this is key to being able to distinguish between KS domains from fatty acid synthases
and polyketide synthases, for example.

Classification rule evaluation hierarchy

Once you have established all of your classification rules, you need to define the order
in which they should be evaluated. This can be done in the Rule hierarchy pane:

[image: Classification rule evaluation hierarchy in the synthaser web application]
This list is automatically populated by the rules that you created in the
Classification rules pane; by default, they will all be on the same evaluation level.

Rules are evaluated in top-to-bottom order according to this hierarchy.
They can be rearranged by simply clicking and dragging the grey handle to the left of
the rule name and dropping them where you want them. This could simply mean reordering
rules on the same level (e.g. moving NRPS before Hybrid PKS-NRPS), or making certain
rules children of others (e.g. if the PKS rule is successfully evaluated, only then
does synthaser try to evaluate the Type I rule). synthaser supports arbitrary levels
of nesting.

Using the rule file

Once you’re happy with your rule set, click the Save rules button in the top-right of
the web application. This wll download a JSON format file containing the domain types,
classification rules and hierarchy, that you can pass directly to synthaser for it to
use instead of the fungal ruleset.

For example, given a custom rule file, my_ruleset.json:

synthaser search -qf sequences.fa --rule_file my_ruleset.json

If you ever want to modify your rule set, this can also be done in the web application
by loading your rule file with the Load rules button, making your tweaks, then
clicking Save rules to generate a new file.

Miscellaneous modules

synthaser also provides a few other modules to help you generate certain files.

getdb

The getdb module can be used to download pre-formatted RPS-BLAST databases for local
searches. This module will connect to the NCBI FTP and download whichever database/s you
specify. For example, to download the CDD to some folder databases:

synthaser getdb Cdd databases/

usage: synthaser getdb [-h] {cdd_families,Cdd,Cdd_NCBI,Cog,Kog,Pfam,Prk,Smart,Tigr} folder

Download a pre-formatted rpsblast database.

For full description of the available databases, see:
 https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd_help.shtml#CDSource

Note that 'cdd_families' will download a file containing a summary of
all families in the CDD for rule building - not a searchable database.

positional arguments:
 {cdd_families,Cdd,Cdd_NCBI,Cog,Kog,Pfam,Prk,Smart,Tigr}
 Database to be downloaded
 folder Folder where database is to be saved. Will save a .tar.gz file, and extract its
 contents to a folder of the same name.

optional arguments:
 -h, --help show this help message and exit

getseq

The getseq module can be used to download sequences, in FASTA format, from the NCBI.
You can provide either a text file containing newline separated NCBI identifiers, or
directly in the command line separated by spaces. For example:

synthaser getseq KAF4294870.1 KAF4294328.1 KAF4293514.1 -o sequences.fasta

usage: synthaser getseq [-h] [-o [OUTPUT]] sequence_ids [sequence_ids ...]

Download sequences from NCBI in FASTA format. This utility will accept either a file containing newline
separated sequence identifiers, or directly on the command line separated by spaces.

positional arguments:
 sequence_ids Collection of NCBI sequence identifiers to retrieve

optional arguments:
 -h, --help show this help message and exit
 -o [OUTPUT], --output [OUTPUT]
 Where to print output (def. stdout)

extract

The extract module can be used to extract domain/query sequences from synthaser
search results. It takes a JSON file (generated by -json/--json_file) and a prefix
string which is used for the generated output files, as well as several filters.

For example, to extract KS, A and TE domain sequences:

$ synthaser extract session.json out_ --types KS A TE -m domain
Output: out_KS.faa out_A.faa out_TE.faa

To extract full NRPS and non-reducing PKS sequences:

$ synthaser extract session.json out_ \
 --mode synthase \
 --classes Non-reducing NRPS
Output: out_Non-reducing.faa out_NRPS.faa

Or to extract PKS_KS domains (CDD) only from highly-reducing PKSs:

$ synthaser extract session.json out_ \
 --families PKS_KS \
 --classes Highly-reducing
Output: out_PKS_KS.faa

usage: synthaser extract [-h] [-m {domain,synthase}] [--types TYPES [TYPES ...]]
 [--classes CLASSES [CLASSES ...]] [--families FAMILIES [FAMILIES ...]]
 session prefix

Extract domain/synthase sequences from search results.

positional arguments:
 session Synthaser session file
 prefix Output file prefix

optional arguments:
 -h, --help show this help message and exit
 -m {domain,synthase}, --mode {domain,synthase}
 Extract domain sequences or whole synthases from a session file
 --types TYPES [TYPES ...]
 Domain types
 --classes CLASSES [CLASSES ...]
 Sequence classifications
 --families FAMILIES [FAMILIES ...]
 CDD families

genbank

The genbank module allows you extract protein sequences from a given GenBank format
file. For example:

synthaser genbank myfile.gbk

will extract all identified protein sequences and print them to the terminal.

As a convenience for fungal megasynthase analysis, we provide the --antismash flag,
which allows you to extract PKS/NRPS sequences directly from a GenBank file generated by
antiSMASH [https://antismash.secondarymetabolites.org/].

usage: synthaser genbank [-h] [--antismash] genbank

Extract protein sequences from GenBank files. To extract PKS or NRPS sequences from antiSMASH GenBank
files, use the --antismash option.

positional arguments:
 genbank GenBank file

optional arguments:
 -h, --help show this help message and exit
 --antismash Extract PKS/NRPS sequences from an antiSMASH file

API Documentation

Reference for every public API exposed by synthaser:

	synthaser.classify

	synthaser.fasta

	synthaser.grouping

	synthaser.models

	synthaser.ncbi

	synthaser.plot

	synthaser.results

	synthaser.rpsblast

	synthaser.search

synthaser.classify

This module contains the logic for classifying synthase objects based on
user-defined rules.

To classify a collection of sequences, use the classify function:

>>> from synthaser.classify import classify
>>> classify(my_sequences)

A custom classification rule file can be provided to this function like so:

>>> classify(my_sequences, rule_file="my_rules.json")

Briefly, rule files should contain:

	Rule entries, specifying the domain combinations required to satisfy them

	Rule graph, encoding the hierarchy and order in which rules are evaluated

Alternatively, you could build a RuleGraph object in Python, e.g.:

>>> from synthaser.classify import Rule, RuleGraph
>>> one = Rule(name="Rule 1", domains=["D1", "D2"], evaluator="0 and 1")
>>> two = Rule(name="Rule 2", domains=["D3", "D4", "D5"], evaluator="(0 and 1) or 2")
>>> three = Rule(name="Rule 3", domains=["D6", "D7"], evaluator="0 or 1")
>>> graph = [
... "Rule 1",
... {
... "Rule 2": ["Rule 3"]
... }
...]
>>> rg = RuleGraph(rules=[one, two, three], graph=graph)

And then save it to a file:

>>> with open("my_rules.json", "w") as fp:
... rg.to_json(fp)

This RuleGraph object can directly classify Synthase objects:

>>> rg.classify(my_sequences)

For further explanation of rule files, refer to the documentation.

	
class synthaser.classify.Rule(name=None, order=None, renames=None, domains=None, filters=None, evaluator=None, **kwargs)

	A classification rule.

	
name

	Name given to proteins satisfying this rule.

	Type

	str

	
domains

	Domain types required to satisfy rule.

	Type

	list

	
filters

	Specific CDD families for each domain type.

	Type

	dict

	
evaluator

	Evaluatable rule satisfaction statement.

	Type

	str

	
evaluate(conditions)

	Evaluates the rules evaluator string given evaluated conditions.

Iterates backwards to avoid bad substitutions in larger (>=10) indices.
e.g. “0 and 1 and … and 13” –> “False and True and … and True3”

	Parameters

	conditions (list) – Boolean values corresponding to domains in this rule.

	Returns

	True if rule is satisfied, otherwise False.

	
rename_domains(domains)

	Renames domain types if substitutions are specified in the rule.

The rename dictionary maps domain types to other domain types.
For example, an ACP domain in a PKS matches the same PP-binding domain as
a T domain in an NRPS, so to follow the naming convention the NRPS rule
renames ACPs to Ts.

Additionally, rename rules can be nested dicts to allow extra rules. For
example, in a PKS-NRPS, the PP-binding domain in the NRPS module should
be named T, not ACP. So, its rule is {‘after’: [‘A’, ‘C’], ‘to’: ‘T’};
any ACP domains after the first A or C will be renamed T.

	
satisfied_by(domains)

	Evaluates this rule against a collection of domains.

Checks that:
1) required domain types are represented in the supplied domains, and
2) domains are of the desired CDD families, if any are specified.

Placeholders in the evaluator string are then replaced by their
respective booleans, and evaluated.

Once a domain in the supplied domains has matched one in the rule, it
cannot be matched to another in the rule. This enables rules based on
counts of domains (e.g. multi-modular PKS w/ 2 KS domains).

	
valid_family(domain)

	Checks a given domain matches a specified CDD family in the rule.

If no families have been specified for the given domain type, this
function will return True (i.e. any family of the type is accepted).

This behaviour is controlled by the filters property of a synthaser rule.
For example, to restrict a KS domain to certain CDD families:

"filters": [
 "type": "KS",
 "domains": ["one", "two"]
]

	
valid_order(domains: List[synthaser.models.Domain]) → bool

	Checks given domains match specified order, if any.

Used for rules where domain order matters, e.g. a hybrid NRPS-PKS
vs PKS-NRPS, where NRPS module comes before PKS and vice versa.

Iterates domain order list, finding earliest matching index in
domain list. If the domain is not found, or the current index
is lower than the previous (current domain occurs earlier than
previous domain), order is invalid and False is returned.

	
class synthaser.classify.RuleGraph(rules=None, graph=None)

	A hierarchy of classification rules.

The RuleGraph is used to classify synthases based on their domains.
It stores Rule objects, as well as a directed graph controlling the
order and hierarchy of classification.

An example synthaser rule graph looks like this:

[
 "Hybrid",
 {"PKS": ["HR-PKS", "PR-PKS", "NR-PKS"]},
 "NRPS"
]

In this example, the “Hybrid” rule is evaluated first. If unsuccessful,
the “PKS” rule is evaluated. If this is successful, synthaser recurses
into child rules, in which case the “HR-PKS”, “PR-PKS” and “NR-PKS” rules
can be evaluated, and so on. Each rule name must have a corresponding
entry in the rules attribute.

Note that terminal leaves in the graph are placed in lists, whereas
hierarchies are written as dictionaries of lists. This preserves rule
order in Python, as well as preventing empty, unnecessary dictionaries
at every level.

	
rules

	Collection of synthaser rules.

	Type

	dict

	
graph

	Hierarchy of synthaser rules for classification.

	Type

	dict

	
synthaser.classify.classify(synthases, rule_file=None)

	Classifies synthases based on defined rules.

If no rule_file is provided, the packaged rules.json will be loaded by
default.

	Parameters

	
	synthases (list) – Synthase objects to classify.

	rule_file (str) – Path to custom classification rule file.

	
synthaser.classify.get_domain_index(query: str, domains: List[synthaser.models.Domain]) → Optional[int]

	Finds the earliest index of a domain in a list of domains, if present.

	
synthaser.classify.traverse_graph(graph, rules, domains, classifiers=None)

	Traverses a rule graph and classifies a collection of domains.

Each node is a dictionary with the schema:

	{

	“title”: “Rule name”,
“children”: [

	{

	“title”: Rule name”,
“children”: […],

]

}

Rules are evaluated in order. If a rule is successfully evaluated,
this function will recurse into any child rules, if any exist.

Finally a classification list, containing the path of rules satisfied
by the given domains, is returned.

	Parameters

	
	graph (list, dict) – Rule graph to traverse.

	rules (dict) – Rule objects to evaluate on domains.

	domains (list) – Domain objects to classify.

	classifiers (list) – Current classifiers for a Domain collection.

	Returns

	classifiers

synthaser.fasta

This module contains some helper functions for handling FASTA format files/strings.

	
synthaser.fasta.count(fasta)

	Counts sequences in an open FASTA file handle.

Iterates file and counts header lines. Then, seeks to start
of the file and returns the count.

	Parameters

	fasta (file pointer) – An open file handle corresponding to a FASTA file.

	Returns

	Total number of sequences in the file.

	Return type

	count (int)

	
synthaser.fasta.create(header, sequence, limit=80)

	Creates a FASTA format string from a header and sequence.

For example:

>>> fasta = create_fasta('header', 'AAAAABBBBBCCCCC', wrap=5)
>>> print(fasta)
>header
AAAAA
BBBBB
CCCCC

	Parameters

	
	header (str) – Name to use in FASTA definition line (i.e. >header).

	sequence (str) – The sequence corresponding to the header.

	limit (int) – Total characters per line before sequence is wrapped.

	Returns

	FASTA format string.

	Return type

	(str)

	
synthaser.fasta.wrap(sequence, limit=80)

	Wraps sequences to limit characters per line.

	Parameters

	
	sequence (str) – Sequence to be wrapped.

	limit (int) – Total characters per line.

	Returns

	Sequence wrapped to maximum limit characters per line.

	Return type

	(str)

synthaser.grouping

This module contains some functions used for grouping Synthase objects
by their classifications.

This is used primarily when grouping sequences for the purpose of annotation in the plot
(i.e. grouping Synthases of like classification, at each level in the classification
hierarchy). Since annotations need to be drawn from more specific to less specific,
this module generates groups in reverse.

Given a collection of classified Synthase objects, a basic workflow using this
module might be:

	Build a dictionary of synthase headers grouped by classification:

>>> levels = group_synthases(synthases)
>>> levels
defaultdict(<class 'list'>, {'PKS': ['seq1', 'seq2', ...], 'HR-PKS': ['seq1', ...]})

	Determine the hierarchy of synthase classifications in your synthases.

>>> hierarchy = get_classification_paths(synthases)
>>> hierarchy
{'PKS': {'Type I': {'Non-reducing': {}, 'Highly-reducing': {}, 'Partially-reducing': {}}}, 'Hybrid': {}}

Note, this is agnostic to our rule files - the rule hierarchy here is built solely
from what is stored in each Synthase object. This also means there should be no
redundant classifications.

	Build an array of annotation groups, each in drawing (i.e. reverse) order.

>>> groups = get_annotation_groups(hierarchy)
>>> groups
[
 [
 {'classification': 'Partially-reducing', 'depth': 2},
 {'classification': 'Highly-reducing', 'depth': 2},
 {'classification': 'Non-reducing', 'depth': 2},
 {'classification': 'Type I', 'depth': 1},
 {'classification': 'PKS', 'depth': 0}
],
 [{'classification': 'Hybrid', 'depth': 0}],
]

Since annotations are drawn from more to less specific, and each classification is drawn
at some offset to the previous one, we need some way of differentiating their level -
hence the depth property.

	
synthaser.grouping.build_dict(path, d=None)

	Recursively generates a dictionary of dictionaries from a list.

	
synthaser.grouping.get_classification_paths(synthases)

	Determines the hierarchy of synthase classifications.

This hierarchy is used when annotating the plot with classification bars.
It should be used in conjunction with the per-classification synthase
dictionary generated using group_synthases().

	
synthaser.grouping.group_synthases(synthases)

	Group synthases by their classifications.

	
synthaser.grouping.iter_annotation_groups(hierarchy)

	Traverses hierarchy and iterates classification groups.

Groups are reverse sorted by depth, such that annotations are drawn from more
specific to less specific.

	
synthaser.grouping.iter_nested_keys(d, depth=0)

	Iterates over all keys in a nested dictionary, reporting their depth.

The depth indicates how deeply nested the yielded key is in the dictionary.
It is used when annotating the plot to determine the position of the
classification bars.

	
synthaser.grouping.merge_dicts(a, b)

	Recursively merges two dictionaries, allowing overlapping keys.

synthaser.models

This module stores the classes used throughout synthaser.

The Domain class represents a conserved domain hit. It stores the broader domain type,
the specific conserved domain profile name (from CDD), as well as its position in its
parent synthase sequence and score from the search. It also provides methods for slicing
the corresponding sequence and serialisation. We can instantiate a Domain object like
so:

>>> from synthaser.models import Domain
>>> domain = Domain(
... type='KS',
... domain='PKS_KS',
... start=756,
... end=1178,
... evalue=0.0,
... bitscore=300
...)

and get its sequence given the parent Synthase object sequence:

>>> domain.slice(synthase.sequence)
'MPIAVGM..'

Likewise, the Synthase class stores information about a synthase, including its name,
amino acid sequence, Domain instances and its classification. It also
contains methods for generating the domain architecture, extraction of domain sequences
and more. For example, we can instantiate a new Synthase object like so:

>>> from synthaser.models import Synthase
>>> synthase = Synthase(
... header='SEQ001.1',
... sequence='MASGTC...',
... domains=[
... Domain(type='KS'),
... Domain(type='AT'),
... Domain(type='DH'),
... Domain(type='ER'),
... Domain(type='KR'),
... Domain(type='ACP'),
...],
...)

Then, we can generate the domain architecture:

>>> synthase.architecture
'KS-AT-DH-ER-KR-ACP'

Or extract all of the domain sequences:

>>> synthase.extract_domains()
{
 "KS_0": "MPIAVGM...",
 "AT_0": "VFTGQGA...",
 "DH_0": "DLLGVPV...",
 "ER_0": "DVEIQVS...",
 "KR_0": "IAENMCS...",
 "ACP_0": "ASTTVAQ..."
}

The object can also be serialised to JSON (note the Domain object works the same way):

>>> js = synthase.to_json()
>>> with open('synthase.json', 'w') as handle:
... handle.write(js)

and subsequently loaded from JSON:

>>> with open('synthase.json') as handle:
... synthase = Synthase.from_json(handle)

This will internally convert the Synthase object, as well as any Domain objects it
contains, to dictionaries, before converting to JSON using the builtin json library
and writing to file. When loading up from JSON, this process is reversed, and the
entries in the file are converted back to Python objects.

	
class synthaser.models.Domain(pssm=None, type=None, domain=None, start=None, end=None, evalue=None, bitscore=None, accession=None, superfamily=None)

	A conserved domain hit.

	
type

	Broader domain type (e.g. KS)

	Type

	str

	
domain

	Specific CDD family (e.g. PKS_KS)

	Type

	str

	
start

	Start of domain hit in parent sequence

	Type

	int

	
end

	End of domain hit in parent sequence

	Type

	int

	
evalue

	Domain hit E-value

	Type

	float

	
bitscore

	Domain hit bitscore

	Type

	float

	
accession

	CDD accession of domain family

	Type

	str

	
superfamily

	CDD accession of domain superfamily

	Type

	str

	
slice(sequence)

	Slices segment of sequence using the position of this Domain.

Given a Domain:

>>> domain = Domain(type='KS', subtype='PKS_KS', start=10, end=20)

And its corresponding Synthase sequence:

>>> synthase.sequence
'ACGTACGTACACGTACGTACACGTACGTAC'

We can extract the Domain:

>>> domain.slice(synthase.sequence)
'CGTACGTACA'

	
class synthaser.models.Synthase(header=None, sequence=None, domains=None, classification=None)

	The Synthase class stores a query protein sequence, its hit domains, and the
methods for filtering and classifying.

	
header

	Synthase name.

	Type

	str

	
sequence

	Amino acid sequence of this Synthase.

	Type

	str

	
domains

	Conserved domain hits in this Synthase.

	Type

	list

	
classification

	All classification rules satisfied.

	Type

	list

	
contains(classes=None, types=None, families=None)

	Checks if Synthase contains given classifications, domain
families or types.

	
extract_all_domains()

	Extracts all domain sequences from this synthase.

For example, given a Synthase:

>>> synthase = Synthase(
... header='synthase',
... sequence='ACGT...', # length 100
... domains=[
... Domain(type='KS', domain='PKS_KS', start=1, end=20),
... Domain(type='AT', domain='PKS_AT', start=50, end=70)
...]
...)

Then, we can call this function to extract the domain sequences:

>>> synthase.extract_all_domains()
{'KS':['ACGT...'], 'AT':['ACGT...']}

	Returns

	Sequences for each domain in this synthase keyed on domain type.

	Return type

	dict

	Raises

	
	ValueError – If the Synthase has no Domain objects.

	ValueError – If the sequence attribute is empty.

	
extract_domains(types=None, families=None)

	Extract specific domain type/family sequences from this Synthase.

	
class synthaser.models.SynthaseContainer(synthases)

	Simple container class for Synthase objects.

The purpose of this class is to facilitate batch actions on Synthase objects, i.e.
serialisation, extraction of domain sequences, iteration over type/subtype, and
printing summaries.

	
add_sequences(sequences)

	Add amino acid sequence to Synthase objects in this container.

	
append(synthase)

	S.append(value) – append value to the end of the sequence

	
extend(synthases)

	S.extend(iterable) – extend sequence by appending elements from the iterable

	
extract_domains(classes=None, types=None, families=None, by='sequence')

	Extract domain sequences from Synthase objects in this container.

For example, given a SynthaseContainer containing Synthase objects:

>>> synthases = [Synthase(header='one', ...), Synthase(header='two', ...)]
>>> container = SynthaseContainer(synthases)

Then, the output of this function may resemble:

>>> container.extract_domains()
{'KS': [('one_KS_1', 'IAIA...'), ('two_KS_1', 'IAIE...')], 'AT': [...]}

	
extract_synthases(classes=None, types=None, families=None)

	Bin entire synthase sequences.

	
classmethod from_sequences(sequences)

	Build a SynthaseContainer from a dictionary of query sequences.

	
to_long(delimiter=', ', headers=True)

	Generate summary of the container in long data format.

For example:

Synthase Length (aa) Architecture Classification
SEQ001.1 1000 KS-AT-DH-ER-KR-ACP PKS, Type I, Highly-reducing

NOTE: actual output is character delimited, not human readable.

synthaser.ncbi

This module handles all interaction with NCBI.

Given a collection of Synthase objects, a workflow might look like:

	Launch new CD-Search run

>>> cdsid = ncbi.launch(synthases)
>>> cdsid
QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0

The query sequences are sent to the batch CD-Search API, where a new run is started and
assigned a unique CD-Search identifier (CDSID) which can be used to check on search
progress.

Note that search parameters for this search are specified by the values in SEARCH_PARAMS:

>>> ncbi.SEARCH_PARAMS
{
 'db': 'cdd',
 'smode': 'auto',
 'useid1': 'true',
 'compbasedadj': '1',
 'filter': 'true',
 'evalue': '3.0',
 'maxhit': '500',
 'dmode': 'full',
 'tdata': 'hits'
}

which can be freely edited, either directly or by using the set_search_params
function.

	Poll CD-Search API for results using the CDSID

>>> response = ncbi.retrieve(cdsid)

This function repeatedly polls the API at regular intervals until either results or an
error has occurred. Internally, this function calls check(), which takes a CDSID and
sends a single request to the API. It returns a Response object (from the requests
library), which will have any search content saved in its text or content
properties.

>>> print(response.text)
#Batch CD-search tool NIH/NLM/NCBI
#cdsid QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0
#datatype hitsFull Results
#status 0
#Start time 2019-09-03T04:21:23 Run time 0:00:04:23
#status success

	Parse results and create Synthase objects

>>> from synthaser import results
>>> handle = results.text.split("\n")
>>> synthases = results.parse(handle)

Additionally, this module provides efetch_sequences, a function for fetching sequences
from NCBI from a collection of accessions. For example:

>>> ncbi.efetch_sequences(['CBF71467.1', 'XP_681681.1'])
{'CBF71467.1': 'MQSAGMHRATA...', 'XP_681681.1': 'MQDLIAIVGSA...'}

The accessions are sent to the NCBI’s Entrez API, which returns the sequences in FASTA
format. They are parsed using fasta.parse, and the resulting dictionary is returned.

	
synthaser.ncbi.check(cdsid)

	Checks the status of a running CD-search job.

CD-Search runs are assigned a unique search ID, which typically take the form:

QM3-qcdsearch-xxxxxxxxxxx-yyyyyyyyyyy

This function queries NCBI for the status of a running CD-Search job
corresponding to the search ID specified by cdsid.

>>> response = check('QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0')

If the job has finished, this function will return the requests.Response object
which contains the run results. If the job is still running, this function will
return None. If an error is encountered, a ValueError will be thrown with the
corresponding error code and message.

	Parameters

	cdsid (str) – CD-search identifier (CDSID).

	Returns

	If the job has completed and is ready for download
False: If the job is still running

	Return type

	True

	Raises

	
	ValueError – If the returned results file has a successful status code but is actually
empty (i.e. contains no results), perhaps due to an invalid query.

	ValueError – When a status code of 1, 2, 4 or 5 is returned from the request.

	
synthaser.ncbi.efetch_sequences(headers)

	Retrieve protein sequences from NCBI for supplied accessions.

This function uses EFetch from the NCBI E-utilities to retrieve the sequences for
all synthases specified in headers. It then calls fasta.parse to parse the
returned response; note that extra processing has to occur because the returned
FASTA will contain a full sequence description in the header line after the
accession.

	Parameters

	headers (list) – A collection of NCBI sequence identifiers (accession, GI, etc)

	Returns

	Sequences downloaded from NCBI

	Return type

	sequences (dict)

	
synthaser.ncbi.get_results(cdsid)

	Downloads results corresponding to a CDSID.

	Parameters

	cdsid (str) – CD-Search identifier

	Returns

	Response object containing search results

	Return type

	requests.Response

	Raises

	ValueError – If response has bad status code

	
synthaser.ncbi.launch(query)

	Launches a new CDSearch run.

	Parameters

	query (Synthase, SynthaseContainer) – Synthase objects to be searched. This could either be a single Synthase
object or a SynthaseContainer; other objects could be used as long as they
implement a to_fasta method.

	Returns

	CDSearch ID (CDSID) corresponding to the new run. This takes the form:
QM3-qcdsearch-XXXXXXXXXXXXXXXX-YYYYYYYYYYYYYYY.

	Return type

	cdsid (str)

	Raises

	
	AttributeError – query has no to_fasta method

	AttributeError – No CDSID was returned from NCBI

	
synthaser.ncbi.retrieve(cdsid, max_retries=-1, delay=20)

	Poll CDSearch for results.

This method queries the NCBI for results from a CDSearch job corresponding to
the supplied cdsid. If max_retries is -1, this function will check for
results every delay interval until something is returned.

If you wish to save the results of a CD-Search run to file, you can supply an
open file handle via the output parameter:

>>> with open('results.tsv', 'w') as results:
... retrieve(
... 'QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0',
... output=results
...)

This function returns the Response object returned by check():

>>> response = retrieve('QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0')
>>> print(response.text)
#Batch CD-search tool NIH/NLM/NCBI
#cdsid QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0
#datatype hitsFull Results
#status 0
...

	Parameters

	
	cdsid (str) – CD-search job ID. Looks like QM3-qcdsearch-xxxxxxxxxxx-yyyyyyyyyyy.

	output (file pointer) – Save results to a given open file handle instead of a local file. This
facilitates usage of e.g. tempfile objects.

	max_retries (int) – Maximum number of retries for checking job completion. If -1 is given, this
function will keep paging for results until something is returned.

	delay (int) – Number of seconds to wait between each request to the NCBI. The wait time is
re-calculated to this value each time, based on the time taken by the
previous request. By default, this is set to 20; giving a value less than 10
will result in a ValueError being thrown.

	Returns

	Response returned by the check()

	Return type

	(requests.models.Response)

	Raises

	
	ValueError – If delay is less than 10.

	ValueError – If no Response is returned by check()

	
synthaser.ncbi.set_search_params(database=None, smode=None, useid1=None, compbasedadj=None, filter=None, evalue=None, maxhit=None, dmode=None)

	Set CD-Search search parameters.

All search parameters are stored in SEARCH_PARAMS; this can either be edited
directly, or through this function, prior to a search.

	Parameters

	
	database (str) – Name of search database. Available options are ‘cdd’ (default), ‘pfam’,
‘smart’, ‘tigrfam’, ‘cog’ and ‘kog’. Only applies when smode is live.

	smode (str) – Search mode; ‘auto’ (automatic), ‘prec’ (precalculated only) or
‘live’ (live searches).

	useid1 (str) – Search archived sequences (‘true’ or ‘false’)

	compbasedadj (str) – Composition-corrected scoring (‘0’ or ‘1’)

	filter (str) – Filter out compositionally biased regions (‘true’ or ‘false’)

	evalue (float) – E-value cutoff

	maxhit (int) – Maximum number of hits per query

	dmode (str) – Data mode of output (‘rep’, ‘std’, or ‘full’)

For a full description of parameters, refer to the NCBI’s documentation [https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd_help.shtml#BatchRPSBSearchParameters].

synthaser.plot

This modules handles the construction of synthaser visualisations.

synthaser plots are implemented as HTML documents with embedded visualisations
created using the D3 JavaScript library. Files used in this process are all stored separately
inside the plot folder in the source code (i.e. separate CSS, JavaScript, HTML).

This module provides two ways to construct a synthaser plot from a collection of
Synthase objects: hosting using Python’s built in socketserver module, or generating
a completely static HTML file containing all code elements necessary for the plot.

	Get necessary data

>>> data = plot.get_data(synthases)

This generates a dictionary which can be converted easily to JSON and given to the
JavaScript visualisation. It contains a dictionary of the Synthase objects, the order in
which they should be drawn, a dictionary of Synthase objects grouped by their
classifications, and the annotation group hierarchy generated using
grouping.get_annotation_groups().

	
	Dynamically serve plots using socketserver

>>> plot.serve_html(data)

This will host the visualisation on some randomly chosen open port on localhost. It
requires a keyboard interrupt to stop serving the plot.

	
	Generate static HTML file

>>> plot.save_html(data, "myoutput.html")

This will generate a completely static HTML file containing all code elements required
to render the plot (JavaScript and CSS embedded directly in the HTML file). This can
then be moved/copied anywhere you would like.

This workflow is mirrored by the plot_synthases function:

>>> plot.plot_synthases(synthases, output="myoutput.html")

	
class synthaser.plot.CustomHandler(data, *args, **kwargs)

	Handler for serving cblaster plots.

	
do_GET()

	Serves each component of the cblaster plot.

	
log_message(format, *args)

	Suppresses logging messages on every request.

	
synthaser.plot.plot_synthases(container, output=None)

	Generates synthaser plot from a collection of Synthase objects.

	
synthaser.plot.save_html(data, output)

	Generates a static HTML file with all visualisation code.

	
synthaser.plot.serve_html(data)

	Serve a synthaser plot using the socketserver module.

synthaser.results

This module stores functions for parsing CD-Search output.

All functionality is provided by parse, which takes an open file handle
corresponding to a CD-Search hit table and returns a list of fully characterized
Synthase objects, i.e.:

>>> from synthaser import results
>>> with open('results.txt') as handle:
... synthases = results.parse(handle)
>>> synthases
[AN6791.2 KS-AT-DH-MT-ER-KR-ACP, ...]

synthaser uses the results.DOMAINS dictionary to control which domain families, and
the quality thresholds (length, bitscore) they must meet, to save in any given search.
This can be edited directly using update_domains, or loaded from a JSON file using
load_domain_json. An entry in this dictionary may look like:

For further details on how to obtain these values and use a custom domain file,
please refer to the user guide.

	
synthaser.results.choose_representative_domain(group, by='evalue')

	Select the best domain from a collection of overlapping domains.

This function tests rules stored in special_rules, which are lambdas that
take two variables. It sorts the group by e-value, then tests each rule using
the container (first, best scoring group) against all other Domains in the
group.

If any test is True, the container type is set to the rule key and returned.
Otherwise, this function will return the container Domain with no modification.

	Parameters

	
	group (list) – Overlapping Domain objects

	by (str) – Measure to use when determining the best domain of the group. Choices:
‘bitscore’: return domain with highest bitscore (relative to threshold)
‘evalue’: return domain with lowest E-value
‘length’: return longest domain hit

	Returns

	Highest scoring Domain in the group. If any special rules have been
satisfied, the type of this Domain will be set to that rule
(e.g. Condensation -> Epimerization).

	Return type

	Domain

	
synthaser.results.domain_from_row(row)

	Parse a domain hit from a row in a CD-search results file.

For example, a typical row might looks like:

>>> print(row)
Q#1 - >AN6791.2 specific 225858 9 1134 0 696.51 COG3321 PksD - cl09938

Using this function will generate:

>>> domain_from_row(row)
PksD [KS] 9-1134

	Parameters

	row (str) – Tab-separated row from a CDSearch results file

	Returns

	Instance of the Domain class containing information about this hit

	Return type

	Domain

	Raises

	ValueError – If the domain in this row is not in the DOMAINS dictionary.

	
synthaser.results.filter_domains(domains, by='evalue', coverage_pct=0.5, tolerance_pct=0.1)

	Filter overlapping Domain objects and test adjcency rules.

Adjacency rules are tested again here, in case they are missed within overlap
groups. For example, the NRPS-para261 domain is not always entirely contained by
a condensation domain, so should be caught by this pass.

	Parameters

	
	domains (list) – Domain instances to be filtered

	by (str) – Metric used to choose representative domain hit (def. ‘evalue’)

	coverage_pct (float) – Conserved domain coverage percentage threshold

	tolerance_pct (float) – CD length tolerance percentage threshold

	Returns

	Domain objects remaining after filtering

	Return type

	list

	
synthaser.results.filter_results(results, **kwargs)

	Build Synthase objects from a parsed results dictionary.

Any additional kwargs are passed to _filter_domains.

	Parameters

	results (dict) – Grouped Domains; output from _parse_cdsearch_table.

	Returns

	Synthase objects containing all Domain objects found in the CD-Search.

	Return type

	synthases (list)

	
synthaser.results.group_overlapping_hits(domains)

	Iterator that groups Domain objects based on overlapping locations.

	Parameters

	domains (list) – Collection of Domain objects belonging to a Synthase

	Yields

	group (list) – Group of overlapping Domain objects

	
synthaser.results.is_fragmented_domain(one, two, coverage_pct=0.5, tolerance_pct=0.1)

	Detect if two adjacent domains are likely a single domain.

This is useful in cases where a domain is detected with multiple small hits. For
example, an NRPS may have two adjacent condensation (C) domain hits that are
both individually too small and low-scoring, but should likely just be merged.

If two hits are close enough together, such that the distance between the start
of the first and end of the second is within some tolerance (default +-10%) of the
total length of a domains PSSM, this function will return True.

	Parameters

	
	one (Domain) – Domain instance

	two (Domain) – Domain instance

	coverage_pct (float) – Conserved domain hit percentage coverage threshold. A hit is considered
truncated if its total length is less than coverage_pct * CD length.

	tolerance_pct (float) – Percentage of CD length to use when calculating acceptable lower/upper
bounds for combined domains.

	Returns

	Domain instances are likely fragmented and should be combined.
False: Domain instances should be separate.

	Return type

	True

	
synthaser.results.load_domains(rule_file)

	Loads domains from a synthaser rule file.

Rule file domain schema:
{

‘name’: KS,
‘domains’: [

	{

	‘accession’: ‘smart00825’,
‘name’: ‘PKS_KS’
…

}

This function flattens the domain type array to create a
dictionary of domain families, so these can be easily looked up
directly from CD-Search rows.

	
synthaser.results.parse(handle, mode='remote', **kwargs)

	Parse CD-Search results.

Any additional kwargs are passed to synthases_from_results.

	Parameters

	
	handle (file) – An open CD-Search results file handle. If you used the website to
analyse your sequences, the file you should download is Domain hits,
Data mode: Full, ASN text. When using a CDSearch object, this
format is automatically selected.

	mode (str) – Search mode (‘local’ or ‘remote’)

	Returns

	A list of Synthase objects parsed from the results file.

	Return type

	list

	Raises

	ValueError – Search mode not ‘local’ or ‘remote’

	
synthaser.results.parse_cdsearch(handle)

	Parse a CD-Search results table and instantiate Domain objects for each hit.

	Parameters

	handle (file) – Open file handle corresponding to a CD-Search results file.

	Returns

	Lists of Domain objects keyed on the query they were found in.

	Return type

	results (dict)

	
synthaser.results.parse_rpsbproc(handle)

	Parse a results file generated by rpsblast->rpsbproc.

This function takes a handle corresponding to a rpsbproc output file.
local.rpsbproc returns a subprocess.CompletedProcess object, which contains the
results as byte string in it’s stdout attribute.

synthaser.rpsblast

This module provides functionality for setting up and performing local synthaser searches using RPS-BLAST and rpsbproc. RPS-BLAST (Reverse PSI-BLAST) searches
query sequences against databases of domain family profiles, and rpsbproc is used to
post-process the raw results into something resembling results from an online CD-Search
run. If synthaser cannot find either program on the system $PATH, it will raise an
exception. For details on installing RPS-BLAST and rpsbproc, please refer to the user
guide.

A basic search can be performed using the search function:

>>> rpsblast.search("sequences.fasta", "Cdd_LE", cpu=4)

This will automatically search the sequences in sequences.fasta against the
Cdd_LE using RPS-BLAST and process the raw results using rpsbproc, resulting in
Response object which be readily parsed like in a remote CD-Search.

A profile database can be downloaded using the download_database function, e.g.:

>>> path = rpsblast.download_database("my_folder", flavour="Cdd")

This will connect to the NCBI’s FTP and download the “Cdd” database (the complete
database). The downloaded file will be a .tar archive, which can be extracted using
untar:

>>> untarred_path = rpsblast.untar(path)

Alternatively, just use getdb to do both steps at once:

>>> rpsblast.getdb("Cdd", "myfolder")

	
synthaser.rpsblast.get_program_path(program)

	Get full path to a program on system PATH.

	
synthaser.rpsblast.rpsblast(query, database, cpu=2)

	Run rpsblast on a query file against a database.

	
synthaser.rpsblast.rpsbproc(results)

	Convert raw rpsblast results into CD-Search results using rpsbproc.

Note that since rpsbproc is reliant upon data files that generally are installed in
the same directory as the executable (and synthaser makes no provisions for them
being stored elsewhere), we must make sure we have the full path to the original
executable. If it is called via e.g. symlink, rpsbproc will not find the data files
it requires and throw an error.

The CompletedProcess returned by this function contains a standard CD-Search results
file, able to be parsed directly by the results module.

	
synthaser.rpsblast.search(query, database, cpu=2)

	Convenience function for running rpsblast and rpsbproc.

synthaser.search

This module serves as the starting point for synthaser, preparing input and
dispatching it to either local or remote searches.

In any given search, input can either be a FASTA file or a collection of NCBI sequence
identifiers. The prepare_input function is used to generate a SynthaseContainer
object from either source which can then be used as a query. For example:

>>> sc1 = search.prepare_input(query_ids=["SEQ001.1", "SEQ002.1"])
>>> sc2 = search.prepare_input(query_file="my_sequences.fasta")

If query_ids are used, the sequences are first retrieved using NCBI Entrez using
ncbi.efetch_sequences().

A full synthaser search can be performed using the search function. This prepares
the input (ids or FASTA) as above, then launches local and remote searches using the
ncbi and rpsblast modules, respectively. Results are then parsed using the results
module, and classified using the classify module. Lastly, the SynthaseContainer
object which was created inside this function is returned.

>>> sc = search.search(query_file="my_sequences.fasta")

To use custom domain and classification rules, simply provide the paths to each file to
the search function:

>>> sc = search.search(
... query_file="my_sequences.fasta",
... domain_file="my_domains.json",
... classify_file="my_rules.json",
...)

Previous searches are stored in the SEARCH_HISTORY variable, and can be summarised
using the history function:

>>> ncbi.history()
1. Run ID: QM3-qcdsearch-B4BAD4B59BC5B80-3E7CFCD3F93E21D0
 Parameters:
 db: cdd
 smode: auto
 useid1: true
 compbasedadj: 1
 filter: true
 evalue: 3.0
 maxhit: 500
 dmode: full
 tdata: hits

This module contains routines for performing local/remote searches.

	
synthaser.search.history()

	Print out summary of previously saved CD-Search runs.
:raises: ValueError – If SEARCH_HISTORY is empty (i.e. no searches have been run)

	
synthaser.search.prepare_input(query_ids=None, query_file=None)

	Generate a SynthaseContainer from either query IDs or a query file.

	Returns

	Synthase objects for query sequences

	Return type

	SynthaseContainer

	Raises

	ValueError – Neither query_ids nor query_file provided

	
synthaser.search.search(mode='remote', query_ids=None, query_file=None, rule_file=None, classify_file=None, results_file=None, cdsid=None, delay=20, max_retries=-1, database=None, cpu=2, **kwargs)

	Run a synthaser search.

CD-Search parameters can be given as kwargs which are passed on to _remote.

	Parameters

	
	mode (str) – synthaser search mode (‘local’ or ‘remote’)

	query_ids (str, file) – NCBI sequence identifiers to analyse

	query_file (file) – Open FASTA file handle

	rule_file (file) – Custom rule JSON file to use when parsing results

	results_file (file) – Results file from a previous CDSearch/RPSBLAST search

	cdsid (str) – CDSearch ID from a previous search

	delay (int) – Time delay (s) between polling NCBI for results (def. 20)

	max_retries (int) – Maximum number of polling attempts before exiting (def. -1)

	database (str) – rpsblast database to use in local searches

	cpu (int) – Number of threads to use in rpsblast

	Returns

	Synthase objects representing query sequences

	Return type

	SynthaseContainer

	Raises

	ValueError – Too many sequences provided (NCBI limit = 4000)

 Python Module Index

 s

 		 	

 		
 s	

 	[image: -]
 	
 synthaser	

 	
 	
 synthaser.classify	

 	
 	
 synthaser.fasta	

 	
 	
 synthaser.grouping	

 	
 	
 synthaser.models	

 	
 	
 synthaser.ncbi	

 	
 	
 synthaser.plot	

 	
 	
 synthaser.results	

 	
 	
 synthaser.rpsblast	

 	
 	
 synthaser.search	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	accession (synthaser.models.Domain attribute)

 	
 	add_sequences() (synthaser.models.SynthaseContainer method)

 	append() (synthaser.models.SynthaseContainer method)

B

 	
 	bitscore (synthaser.models.Domain attribute)

 	
 	build_dict() (in module synthaser.grouping)

C

 	
 	check() (in module synthaser.ncbi)

 	choose_representative_domain() (in module synthaser.results)

 	classification (synthaser.models.Synthase attribute)

 	classify() (in module synthaser.classify)

 	
 	contains() (synthaser.models.Synthase method)

 	count() (in module synthaser.fasta)

 	create() (in module synthaser.fasta)

 	CustomHandler (class in synthaser.plot)

D

 	
 	do_GET() (synthaser.plot.CustomHandler method)

 	Domain (class in synthaser.models)

 	domain (synthaser.models.Domain attribute)

 	
 	domain_from_row() (in module synthaser.results)

 	domains (synthaser.classify.Rule attribute)

 	(synthaser.models.Synthase attribute)

E

 	
 	efetch_sequences() (in module synthaser.ncbi)

 	end (synthaser.models.Domain attribute)

 	evaluate() (synthaser.classify.Rule method)

 	evaluator (synthaser.classify.Rule attribute)

 	evalue (synthaser.models.Domain attribute)

 	
 	extend() (synthaser.models.SynthaseContainer method)

 	extract_all_domains() (synthaser.models.Synthase method)

 	extract_domains() (synthaser.models.Synthase method)

 	(synthaser.models.SynthaseContainer method)

 	extract_synthases() (synthaser.models.SynthaseContainer method)

F

 	
 	filter_domains() (in module synthaser.results)

 	filter_results() (in module synthaser.results)

 	
 	filters (synthaser.classify.Rule attribute)

 	from_sequences() (synthaser.models.SynthaseContainer class method)

G

 	
 	get_classification_paths() (in module synthaser.grouping)

 	get_domain_index() (in module synthaser.classify)

 	get_program_path() (in module synthaser.rpsblast)

 	
 	get_results() (in module synthaser.ncbi)

 	graph (synthaser.classify.RuleGraph attribute)

 	group_overlapping_hits() (in module synthaser.results)

 	group_synthases() (in module synthaser.grouping)

H

 	
 	header (synthaser.models.Synthase attribute)

 	
 	history() (in module synthaser.search)

I

 	
 	is_fragmented_domain() (in module synthaser.results)

 	
 	iter_annotation_groups() (in module synthaser.grouping)

 	iter_nested_keys() (in module synthaser.grouping)

L

 	
 	launch() (in module synthaser.ncbi)

 	
 	load_domains() (in module synthaser.results)

 	log_message() (synthaser.plot.CustomHandler method)

M

 	
 	merge_dicts() (in module synthaser.grouping)

N

 	
 	name (synthaser.classify.Rule attribute)

P

 	
 	parse() (in module synthaser.results)

 	parse_cdsearch() (in module synthaser.results)

 	
 	parse_rpsbproc() (in module synthaser.results)

 	plot_synthases() (in module synthaser.plot)

 	prepare_input() (in module synthaser.search)

R

 	
 	rename_domains() (synthaser.classify.Rule method)

 	retrieve() (in module synthaser.ncbi)

 	rpsblast() (in module synthaser.rpsblast)

 	
 	rpsbproc() (in module synthaser.rpsblast)

 	Rule (class in synthaser.classify)

 	RuleGraph (class in synthaser.classify)

 	rules (synthaser.classify.RuleGraph attribute)

S

 	
 	satisfied_by() (synthaser.classify.Rule method)

 	save_html() (in module synthaser.plot)

 	search() (in module synthaser.rpsblast)

 	(in module synthaser.search)

 	sequence (synthaser.models.Synthase attribute)

 	serve_html() (in module synthaser.plot)

 	set_search_params() (in module synthaser.ncbi)

 	slice() (synthaser.models.Domain method)

 	start (synthaser.models.Domain attribute)

 	superfamily (synthaser.models.Domain attribute)

 	
 	Synthase (class in synthaser.models)

 	SynthaseContainer (class in synthaser.models)

 	synthaser.classify (module)

 	synthaser.fasta (module)

 	synthaser.grouping (module)

 	synthaser.models (module)

 	synthaser.ncbi (module)

 	synthaser.plot (module)

 	synthaser.results (module)

 	synthaser.rpsblast (module)

 	synthaser.search (module)

T

 	
 	to_long() (synthaser.models.SynthaseContainer method)

 	
 	traverse_graph() (in module synthaser.classify)

 	type (synthaser.models.Domain attribute)

V

 	
 	valid_family() (synthaser.classify.Rule method)

 	
 	valid_order() (synthaser.classify.Rule method)

W

 	
 	wrap() (in module synthaser.fasta)

 _static/webapp_right.png
Hybrid PKS-NRPS

NRPS

NRPS-like

HMG-CoA synthase

Thiolase

— Multi-modular PKS

O Type |

Highly-reducing

Partially-reducing

Non-reducing

— Type lll

_static/cdsearch_islands.png
1 S00 1000 1500 2000 2500 3000

Query seq,
active site | Ak S-adenosylmethionine binding site Jpig active site active site JANP binding site
acyl-activating enzume (RAAE) consensus motif Jf active site

s _sita

NAD(P) binding sit NADCE
Specific hits ’
Non-specific decarbox_cond PKS KR_2 [coR_ |
hits omeaa_3jPFaR Het ko Thice
FabB Rcyl_tra { KR_2 NAD
KAS_I_II FabD He KR_1 Lys
elona_cond_enzum | PKS_MbtD I e i KR_ Hup
sC K PKS_NbtC St) KR_ C_PKS-NRPS F
PTZ00050 |c Prs_Hhth LCL_NRPS-1i A_NRPS_Tal_like Hoat
cond_snzymes] pnsjt . Condensation AR-adenyl-do Uop
PRKB7314 PREK1 Epi
PRKB6333 ad C_NRPS-1ike ARF
PRK 065 01 BK LCL_NRPS ’ PRE |
PRKB88439 fa PR u
PRK0OB722 PRK1 53cC5_NRPS-1 ‘ |
PLN02536 hy N
PLN02757 PR
4 <0 LCL_NRPS
PRE07103 car starter-C_NR A_NRPS_Bac
PRK07910 HE DCL_NRPS A_NRPS_ApnA-like
PRK07967 CT_NRPS-1ik A_NRPS_CrdD_like
PRK14691 PRE12316 A_NRPS_PudJ-1like
: C_PES-NRPS_ A_NRPE_SidN3_1ik

KS AT DH MT KR ACP C A T R

_static/ajax-loader.gif

_static/anid_pks.png
Domain architecture of 14 sequences

Angs122 I NI N W BN ETTED>] Hybrid
ANos23.2 [N W DT 1>
Ano2172 [I W >

Anset0.2 N EN N BNT T
AN6791.2 | []

AN3612.2]

Highly-reducing

Non-reducing
Bitscore

AN2032.2 [}

AN6000.2 [f

AN1784.2 -:-:-:l:-}] Partially- feducmg m

0 500 1000 1500 2000 2500 3000 3500

Sequence length (amino acids)

Typel

PKS

B «s
B AT
N oH
B v
kR
0 Acp
I c
A
TR
e
I e
P er
B cat
B sat

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/webapp_left.png
Domain types

Define domain classes (e.g. KS) and select the relevant CDD
domain families. Search suggestions are shown when at least 3

characters are typed in the box

[Delete

Type:

c

Families:
Cyc_NRPS [cd19535] X
starter-C_NRPS [cd19533] X
LCL_NRPS [cd19538] X
LCL_NRPS-ike [cd19531] X
ArgR-Cyc_NRPS-ike [cd20480] X
DCL_NRPS [cd19543] X
E-C_NRPS [cd19544] X
C_PKS-NRPS [cd19532] X
Condensation [pfam00668] x

[Delete

Type:

[E

Families:
E_NRPS [cd19534] X

[Delete

Type:

[pT

Families:
PT_fungal PKS [TIGR04532] x

_images/webapp_mid.png
Delete

Name:
[Hybrid PKS-NRPS

Domains:
KS x Ax Cx ACP x TR x

Evaluation

[07and (Tor2)

Domain filters:

H

Rename domains
[Add]

[Delete

From

TR

Before domains:
Select.

After domains:
Ax Cx

To

R

_images/plot.png
KAF4294870.1
KAF42935141 D>
KAF4294328 1 (I

0 500

Thiolase

1,000 1500 2,000

Sequence length (amino acids)

Domain architecture of 3 sequences
| N I - g

7 Partially-reducing 7 Type|] PKS

. <s
- AT
B oH
T
KR
I AcP

synthaser

If you found synthaser useful, please cite:

Gilchrist, C.L.M, 2020. synthaser

Click the names of sequences to hide them
from the plot

Domain colours can be changed by clicking
the corresponding box in the plot legend.

[Save SVG

Plot settings

Max. sequence length (px): 200

Title font size: 16

Bottom label font size: 14
Synthase settings -
Bar height 20

Head width 10

Font size: 12

Label gap 10
Padding 04
Legend settings -
Cell height 20

Cell width: 30

Cell padding 03

Font size: 12
Download domain sequences

Domain type

[Download!

_images/tooltip.png
Domain architecture of 3 sequences

KAF4294870.1 e — e

aed KAF4294870.1: AT

KAF4204> SR g

Superfamily
Class A
Position 548863

E-value 471632e-95

Bitscore 309.718
Copy sequence:

Domain (315aa)
Protein (2445aa)

_images/webapp_right.png
Hybrid PKS-NRPS

NRPS

NRPS-like

HMG-CoA synthase

Thiolase

— Multi-modular PKS

O Type |

Highly-reducing

Partially-reducing

Non-reducing

— Type lll

_static/file.png

nav.xhtml

 Table of Contents

 		
 synthaser

 		
 User guide

 		
 Installation

 		
 Python version

 		
 Dependencies

 		
 Other dependencies

 		
 Installation

 		
 Installing RPS-BLAST and rpsbproc

 		
 Quickstart

 		
 Pre-search configuration using the config module

 		
 Running a synthaser search using the search module

 		
 The synthaser plot

 		
 Creating custom rule sets

 		
 Identifying domain ‘islands’

 		
 Creating domain types

 		
 Creating classification rules

 		
 Classification rule evaluation hierarchy

 		
 Using the rule file

 		
 Miscellaneous modules

 		
 getdb

 		
 getseq

 		
 extract

 		
 genbank

 		
 API Documentation

 		
 synthaser.classify

 		
 synthaser.fasta

 		
 synthaser.grouping

 		
 synthaser.models

 		
 synthaser.ncbi

 		
 synthaser.plot

 		
 synthaser.results

 		
 synthaser.rpsblast

 		
 synthaser.search

_images/anid_pks.png
Domain architecture of 14 sequences

Angs122 I NI N W BN ETTED>] Hybrid
ANos23.2 [N W DT 1>
Ano2172 [I W >

Anset0.2 N EN N BNT T
AN6791.2 | []

AN3612.2]

Highly-reducing

Non-reducing
Bitscore

AN2032.2 [}

AN6000.2 [f

AN1784.2 -:-:-:l:-}] Partially- feducmg m

0 500 1000 1500 2000 2500 3000 3500

Sequence length (amino acids)

Typel

PKS

B «s
B AT
N oH
B v
kR
0 Acp
I c
A
TR
e
I e
P er
B cat
B sat

_static/plus.png

_images/cdsearch_islands.png
1 S00 1000 1500 2000 2500 3000

Query seq,
active site | Ak S-adenosylmethionine binding site Jpig active site active site JANP binding site
acyl-activating enzume (RAAE) consensus motif Jf active site

s _sita

NAD(P) binding sit NADCE
Specific hits ’
Non-specific decarbox_cond PKS KR_2 [coR_ |
hits omeaa_3jPFaR Het ko Thice
FabB Rcyl_tra { KR_2 NAD
KAS_I_II FabD He KR_1 Lys
elona_cond_enzum | PKS_MbtD I e i KR_ Hup
sC K PKS_NbtC St) KR_ C_PKS-NRPS F
PTZ00050 |c Prs_Hhth LCL_NRPS-1i A_NRPS_Tal_like Hoat
cond_snzymes] pnsjt . Condensation AR-adenyl-do Uop
PRKB7314 PREK1 Epi
PRKB6333 ad C_NRPS-1ike ARF
PRK 065 01 BK LCL_NRPS ’ PRE |
PRKB88439 fa PR u
PRK0OB722 PRK1 53cC5_NRPS-1 ‘ |
PLN02536 hy N
PLN02757 PR
4 <0 LCL_NRPS
PRE07103 car starter-C_NR A_NRPS_Bac
PRK07910 HE DCL_NRPS A_NRPS_ApnA-like
PRK07967 CT_NRPS-1ik A_NRPS_CrdD_like
PRK14691 PRE12316 A_NRPS_PudJ-1like
: C_PES-NRPS_ A_NRPE_SidN3_1ik

KS AT DH MT KR ACP C A T R

_static/minus.png

_static/plot.png
KAF4294870.1
KAF42935141 D>
KAF4294328 1 (I

0 500

Thiolase

1,000 1500 2,000

Sequence length (amino acids)

Domain architecture of 3 sequences
| N I - g

7 Partially-reducing 7 Type|] PKS

. <s
- AT
B oH
T
KR
I AcP

synthaser

If you found synthaser useful, please cite:

Gilchrist, C.L.M, 2020. synthaser

Click the names of sequences to hide them
from the plot

Domain colours can be changed by clicking
the corresponding box in the plot legend.

[Save SVG

Plot settings

Max. sequence length (px): 200

Title font size: 16

Bottom label font size: 14
Synthase settings -
Bar height 20

Head width 10

Font size: 12

Label gap 10
Padding 04
Legend settings -
Cell height 20

Cell width: 30

Cell padding 03

Font size: 12
Download domain sequences

Domain type

[Download!

_static/up.png

_static/webapp_left.png
Domain types

Define domain classes (e.g. KS) and select the relevant CDD
domain families. Search suggestions are shown when at least 3

characters are typed in the box

[Delete

Type:

c

Families:
Cyc_NRPS [cd19535] X
starter-C_NRPS [cd19533] X
LCL_NRPS [cd19538] X
LCL_NRPS-ike [cd19531] X
ArgR-Cyc_NRPS-ike [cd20480] X
DCL_NRPS [cd19543] X
E-C_NRPS [cd19544] X
C_PKS-NRPS [cd19532] X
Condensation [pfam00668] x

[Delete

Type:

[E

Families:
E_NRPS [cd19534] X

[Delete

Type:

[pT

Families:
PT_fungal PKS [TIGR04532] x

_static/tooltip.png
Domain architecture of 3 sequences

KAF4294870.1 e — e

aed KAF4294870.1: AT

KAF4204> SR g

Superfamily
Class A
Position 548863

E-value 471632e-95

Bitscore 309.718
Copy sequence:

Domain (315aa)
Protein (2445aa)

_static/up-pressed.png

_static/webapp_mid.png
Delete

Name:
[Hybrid PKS-NRPS

Domains:
KS x Ax Cx ACP x TR x

Evaluation

[07and (Tor2)

Domain filters:

H

Rename domains
[Add]

[Delete

From

TR

Before domains:
Select.

After domains:
Ax Cx

To

R

